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Estimating the correlation dimension from a chaotic
system with dynamic noise

Atsushi Kawaguchi∗, Koji Yonemoto†, and Takashi Yanagawa‡,

Abstract

In this paper, we propose an estimator of the correlation dimension of the skelton
for chaotic system with dynamic noise and prove the consistency of the estimator
under some assumptions.
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1 Introduction

We consider trajectory {Xt}t=1,2,... ,N generated from

Xt = F (Xt−τ , Xt−2τ , . . . , Xt−dτ ) + εt, (1.1)

where F : Rd → R is unknown non-linear function such that {Yt} is ergodic where
Yt = F (Yt−1, Yt−2, . . . , Yt−d), d and τ are unknown positive integers called embedding
dimension and delay time, respectively. εt’s are random variables on the probability space
(Ω′,F ′, E), where E[εt|At−1

1 (X)] = 0, almost surely, and E[ε
2
t |At−1

1 (X)] = σ2, (σ > 0),
almost surely, where At

s(X) denotes the sigma algebra generated by (Xs, . . . , Xt). {εt}
is called dynamic noise. Model (1.1) may be represented as

Xt = F(Xt−τ ) + et, (1.2)

where F(x) = t(F (x), x1, . . . , xd−1) for x = t(x1, x2, . . . , xd), Xt =
t(Xt, Xt−τ , . . . ,

Xt−(d−1)τ ), and et =
t(εt, 0, . . . , 0). Then we consider

Yt = F(Yt−1), (1.3)

where Yt =
t(Yt, Yt−1, . . . , Yt−d+1).

We refer to model (1.3) as the skeleton of model (1.2). Moreover, we consider a
dynamical system (Ω,F , µ,F), where Ω ⊆ Rd is closed, F is the completion of the Borel
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σ-field with respect to µ, and µ is an invariant measure, i.e. µ(F−1A) = µ(A) for A ∈ F .
We propose to estimate the correlation dimension of its skeleton which is defined as
follows.
Putting

C(r) =

∫∫
Ω×Ω

I(‖y1 − y2‖ ≤ r)dµ(y1)dµ(y2),

where I denotes an indicator function and ‖ · ‖ is a norm, Grassberger and Procaccia
(1983a, b) defined the correlation dimension as

ν = lim
r→0

logC(r)

log r
(1.4)

if the limit exists.
Many authors have discussed the effects of noise on dimension estimation. Wolff

(1990) is concerned with the behavior of the correlation integral when applied to time
series data from autoregressive and moving average processes. Wolff notes that, with
such processes, estimates of the correlation dimension underestimate, an effect discussed
by Dvořák and Klaschka (1990). Ramsey and Yuan (1989, 1990) looked at the statistical
properties of estimates of the correlation dimension. They concluded that small numbers
of observations and the presence of noise may result in the estimates being positively
biased. The effect of noise on the correlation integral has been studied in a number of
papers, Schreiber (1993), Diks (1996), Kugiumtzis (1997), and Oltmans and Verheijen
(1997). These results are limited by the case of observation noise, i.e. they consider
trajectory {Xt} generated from Xt = Yt + εt where Yt = F (Yt−1, Yt−2, . . . , Yt−d).
Smith (1992) proposed an estimator of the correlation dimension that seems to function

well in the presence of observation noise. Unfortunately, his estimator does not work
nearly so well in the case of dynamic noise. Further research on the effect of dynamic
noise on the estimator of the correlation dimension seems desirable (Chan and Tong,
2001).
Our goal is to estimate the correlation dimension of F by observing {Xt}. In this paper,

we propose an estimator of the correlation dimension based on the data filtered out noise
by the Nadaraya-Watson kernel type estimator and show the consistency of the estimator
under some assumptions and conditions mathematically. Kawaguchi (2003) showed the
consistency of the estimator of the correlation dimension from the data generated from
the deterministic system, taking the same approach as Serinko (1994). This is developed
into the proof of the consistency. For filtering out the noise, we take the same approach
as Yonemoto and Yanagawa (2003), who proposed an method for estimating Lyapunov
exponent from nonlinear time series with dynamic noise and showed the consistency of
the estimator.
This paper is organized as follows. We propose a method for estimating the correlation

dimension in Section 2. In Section 3, the consistency of the estimator is proved.
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2 The procedure for estimating the correlation di-

mension and theorem

We propose a procedure for estimating the correlation dimension from {Xt}t=1,2,... ,N .
Outline of the procedure is as follows.

Step 1. Estimate the embedding dimension d and delay time τ from {Xt}t=1,2,... ,N using
the procedure proposed by Yonemoto and Yanagawa (2002). Denote the estimated
embedding dimension and delay time by d̂ and τ̂ , respectively.

Step 2. Estimate the skeleton from {Xt}t=1,2,... ,N by the Nadaraya - Watson kernel

type estimator (Nadaraya, 1964; Watson, 1964) using d̂ and τ̂ , and generating
{ŶN,t}t=1,2,...,K from the estimated skeleton by giving an appropriate initial value.

Step 3. Estimate the correlation dimension by using the generated data.

We give the details of Step 2 and 3.

(Step 2 of the procedure)

Yonemoto and Yanagawa (2003) proposed a following method for estimating the skele-
ton. First, for x = t(x1, x2, . . . , xd), F (x) is estimated by

F̂N (x) =

∑N−τ̂

i=(d̂−1)τ̂+1
KhN
(x −Xi)Xi+τ̂∑N−τ̂

i=(d̂−1)τ̂+1
KhN
(x − Xi)

,

where

KhN
(x −Xi) =

1

hd̂
N

K

(
x −Xi

hN

)
,

K(x) =
∏d̂

i=1
1√
2π
exp

(
−x2

i

2

)
which is called kernel function, and hN ∈ R>0 → 0 as N →

∞ which is called bandwidth. Next, put F̂N (x) =
t(F̂N (x), x1 , . . . , xd̂−1 ). Giving an

appropriate initial vector ŶN,0, we generate {ŶN,t}t=1,2,...,K by

ŶN,t = F̂N (ŶN,t−1), t = 1, 2, . . . , K, (2.1)

where ŶN,t =
t(ŶN,t, ŶN,t−1, . . . , ŶN,t−d̂+1).

(Step 3 of the procedure)

Let CK(r, ŶN) =

(
K

2

)−1 K∑
i<j

I(‖ŶN,i − ŶN,j‖ ≤ r),

CK2(r, ŶN) =

(
K

3

)−1 K∑
i�=j,i�=k,j �=k

I(‖ŶN,i − ŶN,j‖ ≤ r, ‖ŶN,i − ŶN,k‖ ≤ r),
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and r
(MN,K)
j = r0s

MN,K−
h

MN,K
2

i
+j
, (j = 0, 1, . . . , LN,K = [

MN,K

2
]) where some given 0 < s <

1, r0 > 1, and

MN,K = max{m ∈ Z>0; CK2(rm, ŶN) �= 0, a.e. for rm = r0s
m}. (2.2)

We propose an estimator of the correlation dimension as follows.

ν̂N,K =

LN,K∑
j=0

(uj − ū) logCK(r
(MN,K)
j , ŶN)

/
LN,K∑
j=0

(uj − ū)2 (2.3)

where, uj = log r
(MN,K)
j and ū = (LN,K + 1)

−1
∑LN,K

j=0 uj.
In this section, our goal is to prove the consistency of this estimator. For the estimator

of the embedding dimension and delay time, the consistency was proved in Fueda and
Yanagawa (2001). For convenience, denote ν̂(F̂N(d̂, τ̂), d̂) by the estimator (2.3) and
ν(F (d, τ), d) by the correlation dimension (1.4). Let E × µ denote a product measure of
an invariant measure for dynamical system and a measure for dynamic noise. Then, for
any ε > 0, there exists N0 ∈ N such that for any N > N0

E × µ(|ν̂(F̂N(d̂, τ̂), d̂)− ν(F (d, τ), d)| > ε)

≤ E × µ(|ν̂(F̂N (d̂, τ̂), d̂)− ν(F (d, τ), d)| > ε, d̂ = d) + E × µ(d̂ �= d)

= E × µ(|ν̂(F̂N (d, τ̂), d)− ν(F (d, τ), d)| > ε)

≤ E × µ(|ν̂(F̂N (d, τ̂), d)− ν(F (d, τ), d)| > ε, τ̂ = τ) + E × µ(τ̂ �= τ)

= E × µ(|ν̂(F̂N (d, τ), d)− ν(F (d, τ), d)| > ε).

Hence in this section we assume that the embedding dimension and delay time are known.

Theorem 2.1. Under the assumptions that are given in the following section, it fol-
lows that for any ε > 0,

lim
K→∞

lim
N→∞

E × µ(|ν̂N,K − ν| > ε) = 0.

3 Proof of Theorem 2.1

In this section, we give a proof of Theorem 2.1. At first, we decompose the estimator as
follows.

Lemma 3.1. (Serinko, 1994)

ν̂N,K = ν + dN,K + eN,K ,

where

dN,K =
1

Suu

LN,K∑
j=0

{
logC(r

(MN,K)
j )− ν log r

(MN,K)
j

}
(uj − ū),

eN,K =
1

Suu

LN,K∑
j=0

{
logCK(r

(MN,K)
j , ŶN)− logC(r(MN,K)

j )
}
(uj − ū),

and Suu =

LN,K∑
j=0

(uj − ū)2.
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Next, we prove the convergence of dN,K in probability. We assume the following
assumptions.

Assumption 3.1. There exists a compact set G ⊂ Rd such that for any x ∈ G,

F(x) + e ∈ G a.e.,

where e = t(ε, 0, . . . , 0) and ε is identically distributed as {εt}.
Assumption 3.2. F is C1 class on G.

Assumption 3.3. For any N ∈ N such that N ≥ (d− 1)τ + 1,
{Xt}t=(d−1)τ+1,(d−1)τ+2,... ,N ⊂ G.

Assumption 3.4. F̂N is such that

lim
N→∞

E × µ

(
sup
x∈G

|F̂N(x)− F (x)| > ε

)
= 0.

Select an initial vector Y1 randomly from G◦ with uniform probability, and set ŶN,1 =
Y1, where G

◦ denotes an interior of G. Then the following theorem holds.

Theorem 3.1. (Yonemoto and Yanagawa, 2003)
Under Assumption 3.1 through 3.4, for any ε > 0 and t ∈ {1, 2, . . . , K},

lim
N→∞

E × µ(‖ŶN,t −Yt‖ > ε) = 0.

Let CK2(r,Y) =

(
K

3

)−1 K∑
i�=j,i�=k,j �=k

I(‖Yi − Yj‖ ≤ r, ‖Yi − Yk‖ ≤ r), we assum the

following assumption.

Assumption 3.5. For any r > 0 and ε > 0,

lim
K→∞

µ(CK2(r,Y) > ε) = 1.

Lemma 3.2. Under Assumption 3.5 and the condition of Theorem 3.1, for MN,K in
(2.2),

E × µ
(
lim

K→∞
lim

N→∞
MN,K =∞

)
= 1.

Proof. For any integers m, N0 and K0, let

A(m,N0, K0)

=
{
(ω, ω′) ∈ Ω× Ω′;CK2(rl, ŶN) > ε,

for all N ≥ N0, K ≥ K0, l = 0, 1, . . . , m, and ε > 0

where rl = r0s
l
}
.
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Then, A(m,N0, K0) ⊂ {MN,K ≥ m for N ≥ N0 and K ≥ K0}, and therefore for any m

E × µ
(
lim

K→∞
lim

N→∞
MN,K ≥ m

)
≥ E × µ

( ∞⋂
K0=1

∞⋂
N0=1

A(m,N0, K0)

)

= lim
K0→∞

lim
N0→∞

E × µ(A(m,N0, K0))

Thus, in order to prove the lemma, it must be shown that for any m

lim
K0→∞

lim
N0→∞

E × µ(A(m,N0, K0)) = 1.

For any r > 0 and t ∈ {1, 2, . . . , K},
E × µ(CK2(r, ŶN) > ε)

= E × µ(CK2(r, ŶN) > ε and ‖ŶN,t − Yt‖ > r/3)

+E × µ(CK2(r, ŶN) > ε and ‖ŶN,t −Yt‖ ≤ r/3).

From Theorem 3.1,

E × µ(CK2(r, ŶN) > ε and ‖ŶN,t − Yt‖ > r/3) ≤ E × µ(‖ŶN,t −Yt‖ > r/3)

→ 0 (N → ∞).
Further,

E × µ(CK2(r, ŶN) > ε and ‖ŶN,t −Yt‖ ≤ r/3)

≥ E × µ

((
K

3

)−1 K∑
i�=j,i�=k,j �=k

I
(
‖ŶN,i −Yi‖+ ‖Yi −Yj‖+ ‖ŶN,j − Yj‖ ≤ r,

‖ŶN,i − Yi‖+ ‖Yi − Yk‖+ ‖ŶN,k − Yk‖ ≤ r
)
> ε

and ‖ŶN,t − Yt‖ ≤ r/3

)

= E × µ

((
K

3

)−1 K∑
i�=j,i�=k,j �=k

I
(
‖Yi − Yj‖ ≤ r − ‖ŶN,i −Yi‖ − ‖ŶN,j −Yj‖,

‖Yi − Yk‖ ≤ r − ‖ŶN,i −Yi‖ − ‖ŶN,k − Yk‖
)
> ε

and ‖ŶN,t − Yt‖ ≤ r/3

)

≥ E × µ

((
K

3

)−1 K∑
i�=j,i�=k,j �=k

I
(
‖Yi −Yj‖ ≤ r/3, ‖Yi − Yk‖ ≤ r/3

)
> ε

and ‖ŶN,t − Yt‖ ≤ r/3

)

≥ E × µ(CK2(r/3,Y) > ε) + E × µ(‖ŶN,t − Yt‖ ≤ r/3)− 1.

6



From Theorem 3.1 and Assumption 3.5,

E × µ(CK2(r/3,Y) > ε) + E × µ(‖ŶN,t − Yt‖ ≤ r/3)− 1
→ E × µ(CK2(r/3,Y) > ε) (N → ∞)
→ 1 (K → ∞).

Hence, for any m,

lim
K→∞

lim
N→∞

E × µ(CK2(rm, ŶN) > ε) = 1.

From the definition of A(m,N0, K0), the proof is completed.

Lemma 3.3. Under the condition of Lemma 3.2, for any ε > 0

lim
K→∞

lim
N→∞

E × µ(|dN,K| > ε) = 0.

Proof. First, from the definition of the correlation dimension,

logC(r)− ν log r

log r
→ 0 (r → 0).

Thus, there exists a positive real A(r)→ 0 as r → 0 such that for sufficiently small r > 0,
| logC(r)− ν log r| ≤ A(r)| log r|.

Next, it follows by the Cauchy-Schwarz inequality that

|dN,K| ≤ 1

Suu

√√√√LN,K∑
j=0

{
logC(r

(MN,K)
j )− ν log r

(MN,K)
j

}2

√√√√LN,K∑
j=0

(uj − ū)2

≤ 1√
Suu

√√√√LN,K∑
j=0

{
A(r

(MN,K)
j ) log r

(MN,K)
j

}2

≤ 1√
Suu

× max
0≤j≤LN,K

A(r
(MN,K)
j )×

√√√√LN,K∑
j=0

{
log r

(MN,K)
j

}2

.

Serinko(1994) gave

Suu =
1

12
LN,K(LN,K + 1)(LN,K + 2)(log s)

2.

Thus, from Lemma 3.2 and the definition of LN,K ,√
Suu = Op(MN,K

3
2 ).

On the other hand, from Lemma 3.2,√√√√LN,K∑
j=0

{
log r

(MN,K)
j

}2

= Op(MN,K

3
2 ),

7



and for any j ∈ {0, 1, . . . , LN,K},

E × µ
(
lim

K→∞
lim

N→∞
A(r

(MN,K)
j ) = 0

)
= 1.

Therefore,

E × µ


 lim

K→∞
lim

N→∞


 1√

Suu

max
0≤j≤LN,K

A(r
(MN,K)
j )

√√√√LN,K∑
j=0

{
log r

(MN,K)
j

}2


 = 0


 = 1

and

E × µ
(
lim

K→∞
lim

N→∞
|dN,K | = 0

)
= 1.

The convergence with probability 1 implies the convergence in probability, therefore the
proof is completed.

Next, we prove the convergence of eN,K in probability. In order to state the next
theorem, we give some notations and assumptions. Let α = {A1, A2, . . . , Am} and β =
{B1, B2, . . . , Bn} be finite measurable partitions of Ω. From these one may construct the
following partitions:

1. α ∨ β = {A ∩ B; A ∈ α, B ∈ β}
2. F−1α = {F−1A; A ∈ α}
3. αs

r = F(−r)α ∨ F(−r−1)α ∨ · · · ∨ F(−s+1)α ∨ F(−s)α (r, s ∈ N, s.t. r < s),

where F(k) denotes k times convolution of F.
Let F s

r denotes the σ-algebra generated by α
s
r (r, s ∈ N, s.t. r < s) and F∞

0 denotes
the smallest σ-algebra which contains all of the F s

r (r, s ∈ N, s.t. r < s).

Definition 3.1. (Generator)

α is generator⇐⇒ F∞
0 = F

Definition 3.2. (Weak Bernoulli)
A measurable partition α is said to be weak Bernoulli for dynamical system (Ω,F , µ,F)

if

βk = sup
r,s∈N

∑
A∈αr

0

∑
B∈αr+s+k

r+k

|µ(A ∩B)− µ(A)µ(B)|

goes to zero as k → ∞. The βk’s are called the mixing coefficients.

We assume the following assumptions for the dynamical system (Ω,F , µ,F).
Assumption 3.6. (Ω,F , µ,F) has the measurable partition α which is weak Bernoulli

and generator.
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Assumption 3.7. (Ω,F , µ,F) is such that the mixing coefficients satisfy

β
δ

2+δ

k = O(k−(1+ε))

for some δ > 0 and 0 < ε < 1.

Let η(l)(r) = ‖µ(B̄r(Yj)) − µ(B̄r(Y
(l)
j ))‖2

2, where B̄r(y) = {x; ‖x − y‖ ≤ r} and
Y

(l)
j = E[Yj|αj+l

j ], j = 1, 2, · · · . Let η̄(l) = supr η
(l)(r).

Assumption 3.8. (Ω,F , µ,F) is such that

η̄(l) 1
2 = o(l−(1+γ))

for some γ > 0, γ/(1 + γ) > ε.

Let ψ
(l)
k (r) = ‖I(‖Yi − Yj‖ ≤ r) − I(‖Y(l)

i − Y
(l)
j ‖ ≤ r)‖2

2 for i, j = 1, 2, · · · and
k = |i− j|, and ψ̄(l)

k = supr ψ
(l)
k (r).

Assumption 3.9. (Ω,F , µ,F) is such that for any sequence of reals {cn}∞n=0 satisfying

limn→∞ cn =∞ and cn = o(n
1
2 ), one has

n−1∑
k=0

ψ̄
(cn) 1

2
k = o(n

1
2 ).

Let bK =
(

1
K

) 1
2(ν+ε0) where ε0 > 0, and

CK(r,Y) =

(
K

2

)−1 K∑
i<j

I(‖Yi − Yj‖ ≤ r).

Theorem 3.2. (Serinko, 1994)
If (Ω,F , µ,F) satisfies Assumption.3.6 through 3.9, then whenever ν exists,

lim
K→∞

rK = 0 and lim sup
K→∞

bK
rK

< ∞

imply

lim
K→∞

µ

(∣∣∣∣CK(rK ,Y)− C(rK)

C(rK)

∣∣∣∣ > ε

)
= 0.

Let MK = limN→∞MN,K . We may prove that MK = max{m ∈ Z>0; CK2(rm,Y) �=
0, a.e. for rm = r0s

m} similarly as the proof of Lemma 3.5.
Assumption 3.10. For some ε0 > 0 and some δ <

1
d+ε0

, there exists K0 ∈ N such
that for any K > K0,

MK >
δ logK

2| log s| a.e..
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Lemma 3.4. Under Assumption 3.10, let rK = r0s
MK , then

lim
K→∞

rK = 0 and lim sup
K→∞

bK
rK

<∞ a.e..

Proof. For the former part of lemma, we obtain immediately from Lemma 3.2. Setting

r′K = K
−1

2(d+ε0) , Serinko(1994) proved

lim sup
K→∞

bK
r′K

< ∞.

Thus, the last part of lemma is proved if we prove rK > r′K a.e. for any K > K0.
From Assumption 3.10, we have

log
rK
r′K

= log
r0s

MK

K
−1

2(d+ε0)

= log r0 +MK log s+
1

2(d+ ε0)
logK

> log r0 +

(
−δ + 1

d+ ε0

)
1

2
logK > 0.

Lemma 3.5. Under the condition of Theorem 3.1, for a fixed K, any ε > 0 and r > 0

lim
N→∞

E × µ
(∣∣∣CK(r, ŶN)− CK(r,Y)

∣∣∣ > ε
)
= 0.

Proof. It follows by the Markov inequality that

E × µ
(∣∣∣CK(r, ŶN)− CK(r,Y)

∣∣∣ > ε
)
≤ 1
ε
E[|CK(r, ŶN)− CK(r,Y)|]

=
1

ε
E

[∣∣∣∣∣
(
K

2

)−1 K∑
i<j

{I(‖ŶN,i − ŶN,j‖ ≤ r)− I(‖Yi − Yj‖ ≤ r)}
∣∣∣∣∣
]

≤ 1

ε

(
K

2

)−1 K∑
i<j

E[|I(‖ŶN,i − ŶN,j‖ ≤ r)− I(‖Yi −Yj‖ ≤ r)|]

It follows by the triangle inequality that for i, j ∈ {1, 2, . . . , K} (i < j)

E[|I(‖ŶN,i − ŶN,j‖ ≤ r)− I(‖Yi − Yj‖ ≤ r)|]
≤ E[|I(‖ŶN,i − ŶN,j‖ ≤ r)− φδ(ŶN,i − ŶN,j)|]

+E[|φδ(Yi − Yj)− I(‖Yi − Yj‖ ≤ r)|] (3.1)

+E[|φδ(ŶN,i − ŶN,j)− φδ(Yi − Yj)|]
where for any δ > 0,

φδ(x) =

{
0 if ‖x‖ ≥ r
1 if ‖x‖ ≤ r − δ

,

10



0 ≤ φδ(x) ≤ 1 and φδ ∈ C1.
The first term of (3.1) is∫∫

(I(‖x − y‖ ≤ r)− φδ(x − y))d(E × µ)(x)d(E × µ)(y)

≤
∫∫

r−δ<‖x−y‖<r

d(E × µ)(x)d(E × µ)(y)

= E × µ(r − δ < ‖ŶN,i − ŶN,j‖ < r).

Thus, for any ε1 > 0, there exists δ1 ∈ N such that for any δ < δ1

E[|I(‖ŶN,i − ŶN,j‖ ≤ r)− φδ(ŶN,i − ŶN,j)|] < ε1.

By the same way, for any ε2 > 0, there exists δ2 ∈ N such that for any δ < δ2

E[|φδ(Yi − Yj)− I(‖Yi − Yj‖ ≤ r)|] < ε2.

Therefore, from the continuity of φδ and Theorem 3.1, for any δ < min{δ1, δ2},

E[|I(‖ŶN,i − ŶN,j‖ ≤ r)− I(‖Yi − Yj‖ ≤ r)|]
< ε1 + ε2 + E[|φδ(ŶN,i − ŶN,j)− φδ(Yi − Yj)|]
→ ε1 + ε2 (N → ∞).

Consequently, E[|I(‖ŶN,i − ŶN,j‖ ≤ r) − I(‖Yi − Yj‖ ≤ r)|] → 0 as N → ∞ for
i, j ∈ {1, 2, . . . , K} (i < j). Hence, the proof is completed.

Lemma 3.6. Under the condition of Theorem 3.2 and Lemma 3.5, for any ε > 0,

lim
K→∞

lim
N→∞

E × µ(| logCK(rK , ŶN)− logC(rK)| > ε) = 0.

Proof.

E × µ

(∣∣∣∣∣log CK(rK , ŶN)

C(rK)

∣∣∣∣∣ > ε

)

= E × µ

(
log

CK(rK , ŶN)

C(rK)
> ε

)
+ E × µ

(
log

CK(rK , ŶN)

C(rK)
< −ε

)

= E × µ

(
CK(rK , ŶN)

C(rK)
> eε

)
+ E × µ

(
CK(rK , ŶN)

C(rK)
< e−ε

)

= E × µ

(
CK(rK , ŶN)− C(rK)

C(rK)
> eε − 1

)

+E × µ

(
−CK(rK , ŶN) + C(rK)

C(rK)
> 1− e−ε

)
.
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For any ε′ > 0,

E × µ

(∣∣∣∣∣CK(rK , ŶN)− C(rK)

C(rK)

∣∣∣∣∣ > ε′
)

≤ E × µ

(∣∣∣∣∣CK(rK , ŶN)− CK(rK ,Y)

C(rK)

∣∣∣∣∣ > ε′

2

)

+ E × µ

(∣∣∣∣CK(rK ,Y)− C(rK)

C(rK)

∣∣∣∣ > ε′

2

)
.

From Lemma 3.5, the first term goes to zero as N → ∞ for a fixed K. From Theorem
3.2, the second term goes to zero as K → ∞.

Lemma 3.7. Under the condition of Lemma 3.2, Lemma 3.6, and Assumption 3.10
for any ε > 0,

lim
K→∞

lim
N→∞

E × µ(|eN,K| > ε) = 0.

Proof. It follows by the Cauchy-Schwarz inequality that

|eN,K | ≤ 1

Suu

√√√√LN,K∑
j=0

{
logCK(r

(MN,K)
j , ŶN)− logC(r(MN,K)

j )
}2

√√√√LN,K∑
j=0

(uj − ū)2

≤ 1√
Suu

√
LN,K + 1 max

0≤j≤LN,K

∣∣∣logCK(r
(MN,K)
j , ŶN)− logC(r(MN,K)

j )
∣∣∣

=

{
1

12
(log s)2LN,K(LN,K + 2)

}− 1
2

× max
0≤j≤LN,K

∣∣∣logCK(r
(MN,K)
j , ŶN)− logC(r(MN,K)

j )
∣∣∣

Moreover,

E × µ

({
1

12
(log s)2LN,K(LN,K + 2)

}− 1
2

× max
0≤j≤LN,K

∣∣∣logCK(r
(MN,K)
j , ŶN)− logC(r(MN,K)

j )
∣∣∣ > ε

)

≤ E × µ

({
1

12
(log s)2LN,K(LN,K + 2)

}− 1
2

> 1

)

+ E × µ

(
max

0≤j≤LN,K

∣∣∣logCK(r
(MN,K)
j , ŶN)− logC(r(MN,K)

j )
∣∣∣ > ε

)
.

From Lemma 3.2,

lim
K→∞

lim
N→∞

E × µ

({
1

12
(log s)2LN,K(LN,K + 2)

}− 1
2

> 1

)
= 0.
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For any j ∈ {0, 1, . . . , LN,K}
E × µ

(∣∣∣logCK(r
(MN,K)
j , ŶN)− logC(r(MN,K)

j )
∣∣∣ > ε

)
≤ E × µ

(∣∣∣logCK(r
(MN,K)
j , ŶN)− logCK(r

(MK)
j , ŶN))

∣∣∣ > ε/3
)

+E × µ
(∣∣∣logC(r(MN,K)

j − logC(r(MK)
j )

∣∣∣ > ε/3
)

+E × µ
(∣∣∣logCK(r

(MK)
j , ŶN)− logC(r(MK)

j )
∣∣∣ > ε/3

)
From right continuity of CK(r, Y ), for any ε > 0, ε1 > 0, and a fixed K

E × µ

(
∃N1 ∈ N, ∀N > N1, sup

y

∣∣∣logCK(r
(MN,K)
j , y)− logCK(r

(MK)
j , y)

∣∣∣ > ε

)
< ε1.

Thus,

E × µ
(
∃N1 ∈ N, ∀N > N1,

∣∣∣logCK(r
(MN,K)
j , ŶN)− logCK(r

(MK)
j , ŶN)

∣∣∣ > ε
)
< ε1.

Therefore, there exists N1 ∈ N such that for any N > N1 and a fixed K,

E × µ
(∣∣∣logCK(r

(MN,K)
j , ŶN)− logCK(r

(MK)
j , ŶN)

∣∣∣ > ε
)
< ε1.

By the same way, from right continuity of C(r), for any ε > 0 and ε2 > 0, there exists
N2 ∈ N such that for any N > N2 and a fixed K

E × µ
(∣∣∣logC(r(MN,K)

j )− logC(r(MK)
j )

∣∣∣ > ε
)
< ε2.

On the other hand, from Lemma 3.4 and Lemma 3.6, for any ε > 0 and ε3 > 0, there
exists N3 ∈ N and K0 ∈ N such that for any N > N3 and K > K0,

E × µ
(∣∣∣logCK(r

(MK)
j , ŶN)− logC(r(MK)

j )
∣∣∣ > ε

)
< ε3.

Thus, for any N > max{N1, N2, N3} and K > K0

E × µ
(∣∣∣logCK(r

(MN,K)
j , ŶN)− logC(r(MN,K)

j )
∣∣∣ > ε

)
≤ ε1 + ε2 + ε3.

Consequently,

lim
K→∞

lim
N→∞

E × µ

(
max

0≤j≤LN,K

∣∣∣logCK(r
(MN,K)
j , ŶN)− logC(r(MN,K)

j )
∣∣∣ > ε

)
= 0.

Hence, the proof is completed.

(Proof of Theorem 2.1)
From Lemma 3.1, for any ε > 0,

E × µ(|ν̂N,K − ν| > ε) ≤ E × µ(|dN,K| > ε/2) + E × µ(|eN,K| > ε/2).

Hence from Lemma 3.3 and Lemma 3.7,

lim
K→∞

lim
N→∞

E × µ(|ν̂N,K − ν| > ε) = 0.

The proof of Theorem 2.1 is completed.
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