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Abstract. This paper studies pattern detection of Web documents with
the same type of contents using pattern languages. The pattern detection
problem of the documents is to find a descriptive regular pattern of input
strings such that successive variables do not appear in the pattern. Our
pattern detection approach is to find a set of substrings of input strings
instead of to detect a pattern of the strings directly. The set is called a
component set. It divides each input string into colored regions and non-
colored regions. This paper proposes an algorithm to generate a pattern
from the two regions. Under this approach, the pattern detection problem
is replaced as the problem that is to find a component set.

1 Introduction

The number of Web documents has been increased rapidly. A large amount of
information is published in the form of documents in which the structure of the
information is not explicit, as in the case of a database. Lack of explicit structure
is a cause of difficulty in using the documents as a database.

In a Web site, documents with the same type of contents look the same
although the contents are different. We say that a format of the documents is
the same. Examples of such documents are news articles and search result pages.
The contents of news articles are the headline, the date and the body text. In
most cases, HTML or XML tags are used to describe a format. In some cases,
however, simple strings and special characters are also used to describe it.

If only the contents are extracted from the documents, they can be treated
as a database system. In order to achieve that, we need to detect a format of
Web documents. The format detection also applies to information retrieval [3],
discovering important content blocks [11], eliminating noisy information from
Web pages [8, 14], Web page clustering and classification [14], and information
extraction [2, 4–7, 10, 13].

We proposed format detection algorithms in [8, 9] and confirmed the effective-
ness of the algorithms using actual Web documents. We utilized the algorithms
to make wrappers for information extraction automatically [13]. However, we
did not discuss about a formulation of a format of Web documents.

We use pattern languages [1] to define a format of Web documents with the
same type of contents. A pattern is the concatenation of constant symbols and
variable symbols. A pattern is regular if it has at most one occurrence for each



variable [12]. Web documents with the same type of contents consist of their
contents and the common strings for describing them. Therefore, the pattern
detection problem of Web documents is to find a descriptive regular pattern,
such that successive variables do not appear in the pattern, of a set of strings.

In order to detect a pattern of Web documents, our proposed approach [8,
9] divides each input string into colored regions and non-colored regions. The
colored regions correspond to constants of a pattern and the non-colored regions
correspond to variables of the pattern. This paper proposes an algorithm to
generate a pattern from the two regions. Consequently, the pattern detection
problem is replaced as the coloring problem which is to obtain the two regions
from a set of strings.

In order to solve the coloring problem, our approach finds a set of substrings
of input strings. We call the set a component set. Intuitively speaking, all the
occurrences of the strings in the set color each input string. Under the approach,
the coloring problem is replaced as the component set discovery problem which
is to find a component set of input strings.

2 Preliminaries

The set Σ is a finite alphabet. When ai ∈ Σ for all i (1 ≤ i ≤ n), x = a1 · · · an is
a string over Σ. The set of all finite strings of symbols from Σ is denoted by Σ∗.
We denote the empty string by ε. The set of all finite non-null strings of symbols
from Σ is denoted by Σ+. A sample is a finite non-empty subset of Σ+. The
length of x is denoted by |x|. For an integer 1 ≤ i ≤ |x|, the i-th character of x
is denoted by x[i]. Let x and y be two strings. The concatenation of x and y is
denoted by x · y or simply by xy. If |x| = |y| and x[i] = y[i] for each 1 ≤ i ≤ |x|,
the relationship between x and y is denoted by x = y.

For a string x, if there exist strings u, v, w ∈ Σ∗ such that x = uvw, u is
called a prefix of x, v is a substring, and w is a suffix. A substring from the i-th
character to the j-th one on x is denoted by x[i : j]. If there exists a positive
integer i such that x[i : i + |v| − 1] = v, we say that v appears at the position i
on x.

2.1 Pattern Language

This section introduces pattern languages according to [1]. Let V be an infinite
set of symbols disjoint from Σ. An element in Σ is called a constant and an
element in V is called a variable. A pattern is any non-empty string over Σ ∪V .
The set of all patterns is denoted by P . The length of a pattern p, denoted by |p|,
is the number of symbols composing it. The concatenation of two patterns p and q
is denoted by pq. A pattern is regular if it has at most one occurrence for each
variable [12]. In the sequel of this paper, we consider only regular patterns.

Let f be a non-erasing homomorphism from P to P . If f(a) = a for any
constant a, then f is called a substitution. If f is a substitution, f(x) is in V ,
and f(x) = f(y) implies x = y for any variables x and y, then f is called a



renaming of variables. Let p and q be patterns, then we define a binary relation:
(1) p ≡ q iff p = f(q) for some renaming of variables f , (2) p ≤ q iff p = f(q) for
some substitution f .

Let p be a pattern, then the language of p, denoted by L(p), is the set
{s ∈ Σ+ | s ≤ p}. If s ∈ L(p), we say that p generates s.

Let S be a sample and p be a pattern, then p is a pattern of S iff S ⊆ L(p).
A pattern p is descriptive with respect to S iff (1) S ⊆ L(p) and (2) there is no
pattern q such that S ⊆ L(q) ⊂ L(p).

3 Pattern Detection Problem

We consider information extraction from Web documents with the same type
of contents. Fig. 1 shows two HTML documents of personal information with
the name, the job title and the e-mail address. Information extraction from the
documents is to extract only the three fields from the documents.

<li><b>Sachio Hirokawa</b></li> <li><b>Yasuhiro Yamada</b></li>
<li><i>Professor</i></li> <li><i>Researcher</i></li>
<li>hirokawa@cc.kyushu-u.ac.jp</li> <li>yamada@gmail.com</li>

Fig. 1. HTML documents of personal information

The instances of each field are different between the documents. On the other
hand, the other strings are the same between the documents. Therefore, we can
consider that the documents are generated by a pattern. The name, the job title
and the e-mail address correspond to variables and the other strings correspond
to constants. The pattern is “<li><b>x1</b></li>\n<li><i>x2</i></li>
\n<li>x3</li>” where x1, x2 and x3 are variables and \n stands for a new line.

As this example, a field is surrounded by two strings which describe the
structure of it or the design of it on Web browsers. The two strings are common
to Web documents with the same type of contents. We can consider that a
variable is surrounded by constants in a pattern of the documents. A pattern of
the documents is expressed by a regular pattern such that successive variables
do not appear in the pattern.

The learning problem of the pattern language is to find a descriptive pat-
tern of a given sample [1]. Therefore, the pattern detection problem for Web
documents with the same type of contents is defined as follows.

Definition 1 (Pattern Detection Problem). The pattern detection problem
is to find a descriptive regular pattern, such that successive variables do not
appear in the pattern, of a given sample.



4 Coloring Algorithm I

In order to solve the pattern detection problem in the previous section, our
approach divides each string in a given sample into two regions which are col-
ored and non-colored regions. This section proposes an algorithm to generate a
pattern of a sample from the regions.

First, a coloring of a string is defined as follows.

Definition 2. Let s be a non-null string. A pair (s, c) of two strings is a coloring
of s iff c ∈ {0, 1}+, |s| = |c|.
For instance, let s = abcbcac be a string, then a pair (abcbcac, 0101010) is a
coloring of s. Other coloring of s is (abcbcac, 0111110).

An order relation of colorings of a string is defined as follows.

Definition 3. Let (s, c) and (s, c′) be colorings of a string s. Then, (s, c) ≤
(s, c′) iff c[i] ≤ c′[i] for all i.

In the above example, (abcbcac, 0101010) ≤ (abcbcac, 0111110).
The positions of 0 on c are defined as follows.

Definition 4. Let (s, c) be a coloring of a string s. The l-th position of 0 on c,
denoted by z(c, l), is min{1 ≤ k ≤ |c| | #{1 ≤ k′ ≤ k | c[k′] = 0} = l}.
For instance, let (s, c) = (abcbcac, 0111010) be a coloring of a string s, then
z(c, 1) = 1, z(c, 2) = 5 and z(c, 3) = 7.

Definition 5. Let (s, c) be a coloring of a string s. The number of 0 on c,
denoted by sum0(c), is #{1 ≤ k ≤ |c| | c[k] = 0}. The number of successive 1’s
regions on c, denoted by rsum1(c), is #{1 ≤ k ≤ |c′|−1 | c′[k] = 1∧c′[k+1] = 0}
where c′ = c0.

For instance, let (s, c) = (abcbcac, 0111010) be a coloring of a string s, then
sum0(c) = 3 and rsum1(c) = 2.

The above definitions are with respect to a coloring of a single string. We
extend them to a coloring of a set of strings.

Definition 6. Let S = {s1, . . . , sn} be a sample. A set C = {(s1, c1), . . . , (sn, cn)}
of pairs of two strings is a coloring of S iff (si, ci) ∈ C is a coloring of si for
all i.

For instance, let S = {abc, aabba} be a sample, then {(abc, 011), (aabba, 00101)}
is a coloring of S.

Definition 7. Let S = {s1, . . . , sn} be a sample and C = {(s1, c1), . . . , (sn, cn)}
be a coloring of S. The maximum of sum0(ci) for all i, denoted by dzero(C), is
max{sum0(ci) | 1 ≤ i ≤ n}. The maximum of rsum1(ci) for all i, denoted by
done(C), is max{rsum1(ci) | 1 ≤ i ≤ n}.
For instance, in the above example, dzero(C) = 3 and done(C) = 2.

The order of two colorings of a sample is defined as follows.



Definition 8. Let S = {s1, . . . , sn} be a sample, C = {(s1, c1), . . . , (sn, cn)} and
C ′ = {(s1, c

′
1), . . . , (sn, c′n)} be colorings of S. Then, C ≤ C ′ iff (si, ci) ≤ (si, c

′
i)

for all i.

Let S = {bcbcac, abbcba} be a sample, C = {(bcbcac, 110000), (abbcba, 010100)}
and C ′ = {(bcbcac, 110110), (abbcba, 111110)} be colorings of S. Then, C ≤ C ′.

A common coloring of a sample is defined as follows.

Definition 9. Let S = {s1, . . . , sn} be a sample and C = {(s1, c1), . . . , (sn, cn)}
be a coloring of S. Then, C is a common coloring of S iff (1) ∀i, j sum0(ci) =
sum0(cj), (2) ∀i, j, l si[z(ci, l)] = sj [z(cj , l)] (1 ≤ l ≤ sum0(c1)), (3) ∀i, j, l z(ci, l+
1) = z(ci, l) + 1 ⇔ z(cj , l + 1) = z(cj , l) + 1 (1 ≤ l ≤ sum0(c1)), (4) ∀i, j ci[1] =
cj [1] and ci[|ci|] = cj [|cj |].
The first condition indicates that the number of 0 on ci for all i is the same.
The second condition indicates that the character of si at the l-th position
of 0 on ci for all i is the same. The third condition indicates that the l-th
and (l + 1)-th positions of 0 on ci for all i are successive if there exists an
integer j such that those on cj are successive. The last condition indicates that
the first and the last characters on ci for all i are the same. For instance, let
S = {babcb, baacbb} be a sample, C = {(babcb, 00110), (baacbb, 001110)} and
C ′ = {(babcb, 10101), (baacbb, 010101)} be colorings of S. Then, C is a common
coloring of S, but C ′ is not.

Next, we propose an algorithm C2P which outputs a pattern from a color-
ing C = {(s1, c1), . . . , (sn, cn)} of a sample S = {s1, . . . , sn}. Fig. 2 is the pseudo
code of the algorithm. The algorithm calls the function make pattern(), and the
function calls itself recursively. The algorithm receives a pattern generated by
the function. If the last character of the pattern is the special character “$” which
is not in Σ, the algorithm outputs failure. Otherwise, it outputs the generated
pattern.

The function make pattern() generates a pattern by comparing the first char-
acters of (si, ci) for all i. If (si, ci) for all i is (null, null) (i.e. headnull(C) is true),
the function finishes calling itself and returns the empty string.

If ci[1] = 1 for all i (i.e. headone(C) is true), the pattern is the concatenation
of a new variable x and make pattern(shiftone(C)). Note that the variable x
introduced in the case headone(C) is a new variable. The function shiftone(C)
deletes the first 1’s region on ci for all i. Let shiftone(C) = {(s′1, c′1), . . . , (s′n, c′n)}.
If the character 0 does not appear on ci for some i, then (s′i, c

′
i) = (null, null).

Otherwise, (s′i, c
′
i) = (si[k : |si|], ci[k : |ci|]) where k = min{1 ≤ l ≤ |ci| | c[l] =

0}.
If ci[1] = 0 for all i (i.e. headzero(C) is true) and si[1] for all i is the same

(i.e. samehead(C) is true), the pattern is the concatenation of s1[1] as a constant
(head(C)) and make pattern(shiftzero(C)). The function shiftzero(C) deletes the
first characters on si and ci for all i. Let shiftzero(C) = {(s′1, c′1), . . . , (s′n, c′n)}.
If |si| = 1 for some i, then (s′i, c

′
i) = (null, null). Otherwise, (s′i, c

′
i) = (si[2 :

|si|], ci[2 : |ci|]).
The function make pattern() returns the special character “$” which is not

in Σ if (1) there exist integers i, j such that ci[1] 6= cj [1], or (2) ci[1] = 0 for all i



Algorithm C2P
Input: C = {(si, ci) | 1 ≤ i ≤ n, si ∈ Σ+, ci ∈ {0, 1}+, |si| = |ci|};
Output: pattern or failure;

var p : pattern;

begin

p = make pattern(C);
if (the last character of p is $){

output failure;

} else {
output p;

}
end

function make pattern
Input: C = {(si, ci) | 1 ≤ i ≤ n, si ∈ Σ∗, ci ∈ {0, 1}∗, |si| = |ci|};
Output: pattern;

begin

if headnull(C){
return ε;

} elsif headone(C){
return x ·make pattern(shiftone(C));

} elsif (headzero(C)&&samehead(C)) {
return head(C) ·make pattern(shiftzero(C));

} else {
return $;

}
end

Fig. 2. An algorithm to generate a pattern from a coloring of a sample

but there exist integers i, j such that si[1] 6= sj [1], or (3) there exists an integer i
such that (si, ci) is (null, null) but there exists an integer j such that (sj , cj) is
not (null, null).

Theorem 1. Let S = {s1, . . . , sn} be a sample, and C = {(s1, c1), . . . , (sn, cn)}
be a coloring of S. If C2P(C) outputs a pattern p, then p is a pattern of S.

Proof. We prove the theorem by double induction on (dzero(C), done(C)).
(1) Base Step: dzero(C) = 0. Since sum0(ci) = 0 for all i, ci ∈ {1}+. Un-

der the situation, headone(C) is true and make pattern(shiftone(C)) returns
the empty string. Therefore, the output pattern p that C2P(C) returns is a
pattern p = x where x is a variable. Then, p is a pattern of S.

(2) Induction Step: Since dzero(C) > 0, there is some (si, ci) such that si

and ci are not null. Since C2P(C) outputs a pattern p, we have (2-1) headone(C)
or (2-2) headzero(C) & samehead(C).

(2-1) headone(C). We define the prefixes hi of si (i.e. si = his
′
i) and di of ci

(i.e. ci = dic
′
i) (1 ≤ i ≤ n), and consider C ′ = {(s′1, c′1), . . . , (s′n, c′n)} such that



hi = si[1 : ki] and di = ci[1 : ki] where ki = max{1 ≤ y ≤ |ci| | ∀x 1 ≤ x ≤
y, ci[x] = 1}. Since dzero(C) > 0, we have (2-1-1) ∃i |s′i| = 0 or (2-1-2) ∀i |s′i| 6= 0.

(2-1-1) ∃i |s′i| = 0. Then, make pattern(C ′) returns “$” and make pattern(C)
returns “x$” where x is a variable. Therefore, C2P(C) returns failure. This
contradicts the assumption.

(2-1-2) ∀i |s′i| 6= 0. We can easily confirm that C ′ is a coloring of S′ =
{s′1, . . . , s′n} because ∀i c′i ∈ {0, 1}+ and |s′i| = |c′i|. Since dzero(C ′) = dzero(C)
and done(C ′) = done(C) − 1, we can apply induction hypothesis for C ′ and
q = C2P (C ′) is a pattern of S′. In the situation, we have p = xq where x is
a variable because headone(C) is true and C ′ = shiftone(C). Therefore, p is a
pattern of S.

(2-2) headzero(C) & samehead(C). We define the prefixes hi of si (i.e. si =
his

′
i) and di of ci (i.e. ci = dic

′
i) (1 ≤ i ≤ n), and C ′ = {(s′1, c′1), . . . , (s′n, c′n)} such

that hi = si[1] and di = ci[1]. Since dzero(C) > 0, we have (2-2-1) ∀i |s′i| = 0 or
(2-2-2) ∃i |s′i| 6= 0.

(2-2-1) ∀i |s′i| = 0. In this situation, |si| = 1 for all i and s1 = · · · = sn.
C2P(C) outputs a pattern p = s1. Therefore, p is a pattern of S.

(2-2-2) ∃i |s′i| 6= 0. We have (2-2-2-1) ∃j |s′j | = 0 or (2-2-2-2) ∀j |s′j | 6= 0.
(2-2-2-1) ∃j |s′j | = 0. Then, the function make pattern(C ′) returns “$” and

make pattern(C) returns “s1[1]$”. Therefore, C2P(C) returns failure. This con-
tradicts the assumption.

(2-2-2-2) ∀j |s′j | 6= 0. We can easily confirm that C ′ is a coloring of S′ =
{s′1, . . . , s′n} because ∀i c′i ∈ {0, 1}+ and |s′i| = |c′i|. Since dzero(C ′) = dzero(C)−
1 and done(C ′) = done(C), we can apply induction hypothesis for C ′ and
q = C2P (C ′) is a pattern of S′. In the situation, we have p = s1[1]q because
headzero(C) & samehead(C) is true and C ′ = shiftzero(C). Therefore, p is a
pattern of S.

We have now fulfilled both conditions of the principle of mathematical in-
duction. ut

The time complexity of the algorithm C2P is O(N) where N is the total
length of strings in an input sample because the algorithm reads all characters
on si and ci for all i at most once.

We give the following lemma about a common coloring of a sample.

Lemma 1. Let S = {s1, . . . , sn} be a sample, and C = {(s1, c1), . . . , (sn, cn)}
be a coloring of S. Then, C is a common coloring of S iff C2P(C) outputs a
pattern.

Proof. First, we prove that C2P(C) outputs a pattern if C is a common coloring
of S by double induction on (dzero(C), done(C)).

(1) Base Step: dzero(C) = 0. Since sum0(ci) = 0 for all i, ci ∈ {1}+. Under
the situation, the function headone(C) is true and make pattern(shiftone(C))
returns the empty string. Therefore, C2P(C) outputs a pattern p = x where x
is a variable.

(2) Induction Step: Since C is a common coloring of S, we have (2-1) ∀i ci[1] =
1 or (2-2) ∀i ci[1] = 0.



(2-1) ∀i ci[1] = 1. We define the prefixes hi of si (i.e. si = his
′
i) and di

of ci (i.e. ci = dic
′
i) (1 ≤ i ≤ n), and consider C ′ = {(s′1, c′1), . . . , (s′n, c′n)}

such that hi = si[1 : ki] and di = ci[1 : ki] where ki = max{1 ≤ y ≤ |ci| |
∀x 1 ≤ x ≤ y, ci[x] = 1}. Since dzero(C) > 0, we have (2-1-1) ∃i |s′i| = 0 or
(2-1-2) ∀i |s′i| 6= 0.

(2-1-1) ∃i |s′i| = 0. Then, ci ∈ {1}+ for such i. Since dzero(C) > 0, there is
some (s′j , c

′
j) such that c′j [1] = 0. Thus, we have sum0(ci) = 0 and sum0(cj) =

sum0(c′j) ≥ 1 which contradicts the first condition of common coloring.
(2-1-2) ∀i |s′i| 6= 0. We can confirm that C ′ is a common coloring of S′ =

{s′1, . . . , s′n} because (1) ∀i sum0(c′i) = sum0(ci), therefore ∀i, j sum0(c′i) =
sum0(c′j); (2) ∀i, l si[z(ci, l)] = s′i[z(c′i, l)] (1 ≤ l ≤ sum0(ci)), thus ∀i, j, l
s′i[z(c′i, l)] = s′j [z(c′j , l)] and (3) ∀i, j, l z(c′i, l + 1) = z(c′i, l) + 1 ⇔ z(c′j , l + 1) =
z(c′j , l) + 1; (4) ∀i ci[|ci|] = c′i[|c′i|], therefore ∀i, j c′i[|c′i|] = c′j [|c′j |] and c′i[1] =
c′j [1] = 0. Since dzero(C ′) = dzero(C) and done(C ′) = done(C) − 1, we can
apply induction hypothesis for C ′. C2P(C) outputs a pattern p = xq where x is
a variable and q = C2P (C ′) because headone(C) is true and C ′ = shiftone(C).

(2-2) ∀i ci[1] = 0. Since C is a common coloring of S, we have ∀i, j si[1] =
sj [1]. We define the prefixes hi of si (i.e. si = his

′
i) and di of ci (i.e. ci = dic

′
i)

(1 ≤ i ≤ n), and consider C ′ = {(s′1, c′1), . . . , (s′n, c′n)} such that hi = si[1] and
di = ci[1]. Since dzero(C) > 0, we have (2-2-1) ∀i |s′i| = 0 or (2-2-2) ∃i |s′i| 6= 0.

(2-2-1) ∀i |s′i| = 0. In this situation, |si| = 1 for all i and s1 = · · · =
sn. Then, we have headzero(C) & samehead(C). Therefore, C2P(C) outputs
s1 ·make pattern(C ′) = s1.

(2-2-2) ∃i |s′i| 6= 0. We have (2-2-2-1) ∃j |s′j | = 0 or (2-2-2-2) ∀j |s′j | 6= 0.
(2-2-2-1) ∃j |s′j | = 0. If c′i[|c′i|] = 0 for such i, sum0(ci) > 1 = sum0(cj).

If c′i[|c′i|] = 1 for such i, ci[|ci|] 6= cj [|cj |] = 0. Therefore, C is not a common
coloring of S. This contradicts the assumption.

(2-2-2-2) ∀j |s′j | 6= 0. The first character of ci for all i is 0, and s′i (resp. c′i) is
a string which is removed the first character from si (resp. ci). Therefore, C ′ is a
common coloring of S′ because C ′ holds the four conditions of common coloring.
Since dzero(C ′) = dzero(C)−1 and done(C ′) = done(C), we can apply induction
hypothesis for C ′. C2P(C) outputs a pattern p = s1[1]q where q = C2P (C ′)
because headzero(C) & samehead(C) is true and C ′ = shiftzero(C).

We have now fulfilled both conditions of the principle of mathematical in-
duction.

Next, we prove that C is a common coloring of S if C2P(C) outputs a pat-
tern p by double induction on (dzero(C), done(C)).

(1) Base Step: dzero(C) = 0. Since sum0(ci) = 0 for all i, ci ∈ {1}+. Under
the situation, C is a common coloring of S because ∀i, j ci[1] = cj [1] and ci[|ci|] =
cj [|cj |].

(2) Induction Step: Since dzero(C) > 0, there is some (si, ci) such that ci

is not null. Since C2P(C) outputs a pattern p, we have (2-1) headone(C) or
(2-2) headzero(C) & samehead(C).

(2-1) headone(C). We define the prefixes hi of si (i.e. si = his
′
i) and di of ci

(i.e. ci = dic
′
i) (1 ≤ i ≤ n), and consider C ′ = {(s′1, c′1), . . . , (s′n, c′n)} such that



hi = si[1 : ki] and di = ci[1 : ki] where ki = max{1 ≤ y ≤ |ci| | ∀x 1 ≤ x ≤
y, ci[x] = 1}. Since dzero(C) > 0, we have (2-1-1) ∃i |s′i| = 0 or (2-1-2) ∀i |s′i| 6= 0.

(2-1-1) ∃i |s′i| = 0. Then, make pattern(C ′) returns “$” and make pattern(C)
returns “x$” where x is a variable. Therefore, C2P(C) returns failure. This
contradicts the assumption.

(2-1-2) ∀i |s′i| 6= 0. We can easily confirm that C ′ is a coloring of S′ =
{s′1, . . . , s′n} because ∀i c′i ∈ {0, 1}+ and |s′i| = |c′i|. Since dzero(C ′) = dzero(C)
and done(C ′) = done(C)−1, we can apply induction hypothesis for C ′. We have
C2P (C) = xq where x is a variable and q = C2P (C ′) because headone(C) is
true and C ′ = shiftone(C). In this situation, C is a common coloring of S
because (1) ∀i sum0(ci) = sum0(c′i), therefore ∀i, j sum0(ci) = sum0(cj);
(2) ∀i, l si[z(ci, l)] = s′i[z(c′i, l)] (1 ≤ l ≤ sum0(ci)), therefore ∀i, j, l si[z(ci, l)] =
sj [z(cj , l)] (1 ≤ l ≤ sum0(c1)) and (3) ∀i, j, l z(ci, l + 1) = z(ci, l) + 1 ⇔
z(cj , l + 1) = z(cj , l) + 1; (4) ∀i ci[|ci|] = c′i[|c′i|], therefore ∀i, j ci[|ci|] = cj [|cj |]
and ci[1] = cj [1] = 1.

(2-2) headzero(C) & samehead(C). We define the prefixes hi of si (i.e. si =
his

′
i) and di of ci (i.e. ci = dic

′
i) (1 ≤ i ≤ n), and consider C ′ = {(s′1, c′1), . . . , (s′n, c′n)}

such that hi = si[1] and di = ci[1]. Since dzero(C) > 0, we have (2-2-1) ∀i |s′i| =
0 or (2-2-2) ∃i |s′i| 6= 0.

(2-2-1) ∀i |s′i| = 0. In this situation, ∀i |si| = 1 and s1 = · · · = sn. C2P(C)
outputs s1. C is a common coloring of S because C holds the four conditions of
common coloring.

(2-2-2) ∃i |s′i| 6= 0. We have (2-2-2-1) ∃j |s′j | = 0 or (2-2-2-2) ∀j |s′j | 6= 0.
(2-2-2-1) ∃j |s′j | = 0. Then, the function make pattern(C ′) returns “$” and

make pattern(C) returns “s1[1]$”. Therefore, C2P(C) returns failure. This con-
tradicts the assumption.

(2-2-2-2) ∀j |s′j | 6= 0. We can easily confirm that C ′ is a coloring of S′ =
{s′1, . . . , s′n} because ∀i c′i ∈ {0, 1}+ and |s′i| = |c′i|. Since dzero(C ′) = dzero(C)−
1 and done(C ′) = done(C), we can apply induction hypothesis for C ′. We have
C2P (C) = s1[1]q where q = C2P (C ′) because headzero(C) & samehead(C)
is true and C ′ = shiftzero(C). The first character of ci for all i is 0, and s′i
(resp. c′i) is a string which is removed the the first character from si (resp. ci).
Therefore, C is a common coloring of S because C holds the four conditions of
common coloring.

We have now fulfilled both conditions of the principle of mathematical in-
duction. ut

We consider a pattern generated from each pair of two strings in a common
coloring of a sample.
Lemma 2. Let S = {s1, s2} be a sample, and C = {(s1, c1), (s2, c2)} be a com-
mon coloring of S. Let C1 = {(s1, c1)} and C2 = {(s2, c2)}. Let p1 = C2P (C1)
and p2 = C2P (C2). Then, p1 ≡ p2.

Proof. We prove the lemma by double induction on (dzero(C1), done(C1)).
(1) Base Step: dzero(C1) = 0, then c1 ∈ {1}+. Since C is a common coloring

of S, c2 ∈ {1}+. We have p1 = C2P (C1) = x and p2 = C2P (C2) = y where x
and y are variables. Therefore, p1 ≡ p2.



(2) Induction Step
(2-1) The last character of c1 is 1. Since C is a common coloring of S, the

last character of c2 is also 1.
Since dzero(C1) > 0, c1 contains an occurrence of 0. Thus we have c1 = c′10z1

and c2 = c′20z2 for some z1, z2 ∈ {1}+. Let s′1 = s1[1 : |s1| − |z1|] and s′2 =
s2[1 : |s2| − |z2|] be strings. Let C ′1 = {(s′1, c′10)} and C ′2 = {(s′2, c′20)}. Since
dzero(C ′1) = dzero(C1) and done(C ′1) = done(C1) − 1, we can apply induction
hypothesis for C ′1 and C ′2. We have C2P (C ′1) ≡ C2P (C ′2).

We have p1 = C2P (C1) = C2P (C ′1)x and p2 = C2P (C2) = C2P (C ′2)y
where x and y are variables. Therefore, p1 ≡ p2.

(2-2) The last character of c1 is 0. Since C is a common coloring of S, the
last character of c2 is also 0.

Therefore, we have c1 = c′10 and c2 = c′20 for some c′1, c
′
2. Let s′1 = s1[1 :

|s1| − 1] and s′2 = s2[1 : |s2| − 1] be strings. Let C ′1 = {(s′1, c′1)} and C ′2 =
{(s′2, c′2)}. Since dzero(C ′1) = dzero(C1) − 1 and done(C ′1) = done(C1), we can
apply induction hypothesis for C ′1 and C ′2. We have C2P (C ′1) ≡ C2P (C ′2).

We have p1 = C2P (C1) = C2P (C ′1)d and p2 = C2P (C2) = C2P (C ′2)d
where d = s1[|s1|]. Therefore, p1 ≡ p2.

We have now fulfilled both conditions of the principle of mathematical in-
duction. ut

We consider the relation between the order of two colorings and the order of
two patterns.

Lemma 3. Let S = {s1, . . . , sn} be a sample, C1 = {(s1, c1,1), . . . , (sn, c1,n)}
and C2 = {(s1, c2,1), . . . , (sn, c2,n)} be common colorings of S. Let p1 = C2P (C1)
and p2 = C2P (C2) be patterns of S. Then, C1 ≤ C2 ⇒ p1 ≤ p2.

Proof. Let C ′1 = {(s1, c1,1)} and C ′2 = {(s1, c2,1)}. Note that C2P (C1) ≡
C2P (C ′1) and C2P (C2) ≡ C2P (C ′2). It suffices to show that C2P (C1) ≤ C2P (C ′1).
We prove this by induction on (dzero(C ′2), done(C ′2)).

(1) Base Step: dzero(C ′2) = 0, then we have c2,1 ∈ {1}+. The output pattern
that C2P(C ′2) returns is p′2 = x where x is a variable. Therefore, C2P (C ′1) =
p′1 ≤ p′2.

(2) Induction Step
(2-1) The last character of c2,1 is 1.
Since dzero(C ′2) > 0, we have c2,1 = c′2,10z2 where z2 ∈ {1}+. Since C ′1 ≤ C ′2,

the (|c′2,1|+ 1)-th character on c1,1 is 0. Therefore, we have c1,1 = c′1,10z1 where
z1 ∈ {0, 1}+ such that |c′1,1| = |c′2,1| and |z1| = |z2|.

Let s′1 = s1[1 : |s1| − |z2|] be a string. Let C ′′1 = {(s′1, c′1,10)} and C ′′2 =
{(s′1, c′2,10)} be common colorings of S′ = {s′1}. Since dzero(C ′′2 ) = dzero(C ′2)
and done(C ′′2 ) = done(C ′2)−1, we can apply induction hypothesis for C ′′1 and C ′′2 .

We have p′1 = C2P (C ′1) = C2P (C ′′1 )p′′1 and p′2 = C2P (C ′2) = C2P (C ′′2 )x
where p′′1 is a pattern and x is a variable. Therefore, p′1 ≤ p′2.

(2-2) The last character of c2,1 is 0. Since C ′1 ≤ C ′2, the last character of c1,1

is also 0.



We have c1,1 = c′1,10 and c2,1 = c′2,10. Let s′1 = s1[1 : |s1|−1] be a string. Let
C ′′1 = {(s′1, c′1,1)} and C ′′2 = {(s′1, c′2,1)} be common colorings of S′ = {s′1}. Since
dzero(C ′′2 ) = dzero(C ′2)− 1 and done(C ′′2 ) = done(C ′2), we can apply induction
hypothesis for C ′′1 and C ′′2 .

We have p′1 = C2P (C ′1) = C2P (C ′′1 )d and p′2 = C2P (C ′2) = C2P (C ′′2 )d
where d = s1[|s1|]. Therefore, p′1 ≤ p′2.

We have now fulfilled both conditions of the principle of mathematical in-
duction. ut

A minimum common coloring is defined as follows.

Definition 10. A common coloring C of a sample S is a minimum common
coloring of S iff there exists no common coloring C ′ of S such that C ′ < C.

For instance, let S = {abcba, abaaba, abbbba} be a sample, then a minimum
common coloring of S is {(abcba, 00100), (abaaba, 001100), (abbbba, 001100)}.

Next, we consider a relation between a minimum common coloring and a
descriptive pattern.

Theorem 2. If C is a minimum common coloring of a sample S, then the
pattern p = C2P (C) is descriptive with respect to S.

Proof. It suffices to show that p ≤ q for any pattern q of S. Let q = e1 · · · el

where er ∈ Σ ∪ V (1 ≤ r ≤ l). Since q is a pattern of S = {s1, . . . sn}, we
have substitutions f i (i = 1, . . . , n) such that si = f i(e1) · · · f i(el). We define a
coloring of si depending on whether er is a variable (er ∈ V ) or er is a constant
(er ∈ Σ) as follows:

ci[j] =
{

0 if epos(i,j) ∈ Σ
1 if epos(i,j) ∈ V

where pos(i, j) = min{m | j ≤ ∑m
k=1 |f i(ek)|}. Intuitively, pos(i, j) = r means

that the character at the j-th position on si comes from the r-th character er of
the pattern q = e1 · · · er · · · el.

We can see that C ′ = {(s1, c
i
1), . . . (sn, ci

n)} is a common coloring and that
q = C2P (C ′). Since C is a minimum common coloring, we have p ≤ q by
Lemma 3. ut

This theorem shows that the algorithm C2P(C) outputs a descriptive pattern
of S if C is a minimum common coloring of S. Therefore, the pattern detection
problem in Section 3 is replaced as the following problem.

Definition 11 (Coloring Problem). The coloring problem is, given a sample,
to obtain a minimum common coloring of the sample.

5 Coloring Algorithm II

We propose an another algorithm C2P’ to generate a pattern from a coloring
of a sample. Fig. 3 is the pseudo code of the algorithm. The algorithm C2P’



uses the function make pattern() in the algorithm C2P. The algorithm generates
a pattern from (si, ci) for each i. If all generated patterns p1, . . . , pn are the
same without renaming (i.e. same() is true), the algorithm outputs the pattern.
Otherwise, it outputs failure.

Algorithm C2P’
Input: C = {(si, ci) | 1 ≤ i ≤ n, si ∈ Σ+, ci ∈ {0, 1}+, |si| = |ci|};
Output: pattern or failure;

var: p1, . . . , pn : pattern;

i : integer;

begin

for (i = 1; i ≤ n; i + +){
pi = make pattern({(si, ci)})

}
if same(p1, . . . , pn){

output p1;

} else {
output failure;

}
end;

Fig. 3. An another algorithm to generate a pattern from a coloring of a sample

Corollary 1. Let S = {s1, . . . , sn} be a sample, and C = {(s1, c1), . . . , (sn, cn)}
be a coloring of S. Let p = C2P (C) and p′ = C2P ′(C). Then, p ≡ p′.

Proof. We prove the corollary by double induction on (dzero(C), done(C)).
(1) Base Step: dzero(C) = 0. Since sum0(ci) = 0 for all i, ci ∈ {1}+. First,

we consider the algorithm C2P(C). Under the situation, headone(C) is true and
make pattern(shiftone(C)) returns the empty string. Therefore, C2P(C) outputs
a pattern p = x where x is a variable.

Next, we consider the algorithm C2P’(C). The function make pattern({(si, ci)})
for each i returns a pattern p′i = yi where yi is a variable. Since ∀i, j p′i ≡ p′j ,
C2P’(C) outputs a pattern p′ = y1. Therefore, p ≡ p′.

(2) Induction Step:
(2-1) headone(C). We define the prefixes hi of si (i.e. si = his

′
i) and di of ci

(i.e. ci = dic
′
i) (1 ≤ i ≤ n), and consider C ′ = {(s′1, c′1), . . . , (s′n, c′n)} such that

hi = si[1 : ki] and di = ci[1 : ki] where ki = max{1 ≤ y ≤ |ci| | ∀x 1 ≤ x ≤
y, ci[x] = 1}.

(2-1-1) ∃i |s′i| = 0. Then, make pattern(C ′) returns “$” and make pattern(C)
returns “x$” where x is a variable. Therefore, C2P(C) returns failure.

The function make pattern({(si, ci}) for such i returns a pattern pi = yi

where yi is a variable. However, make pattern({(sj , cj}) such that |s′j | 6= 0 re-



turns a pattern pj = yjp
′
j where p′j is a pattern. Therefore, C2P’(C) also returns

failure.

(2-1-2) ∀i |s′i| 6= 0. We can easily confirm that C ′ is a coloring of S′ =
{s′1, . . . , s′n} because ∀i c′i ∈ {0, 1}+ and |s′i| = |c′i|. Since dzero(C ′) = dzero(C)
and done(C ′) = done(C) − 1, we can apply induction hypothesis for C ′ and
q = C2P (C ′) = C2P ′(C ′).

In the situation, C2P(C) outputs a pattern p = xq where x is a variable
because headone(C) is true and C ′ = shiftone(C).

The function make pattern({(si, ci}) for each i returns a pattern pi = yiq
where yi is a variable. The pattern output by C2P’(C ′) is p′ = y1q because all
generated patterns by the function are the same. Therefore, p ≡ p′.

(2-2) headzero(C) & samehead(C). We define the prefixes hi of si (i.e. si =
his

′
i) and di of ci (i.e. ci = dic

′
i) (1 ≤ i ≤ n), and C ′ = {(s′1, c′1), . . . , (s′n, c′n)}

such that hi = si[1] and di = ci[1].

(2-2-1) ∀i |s′i| = 0. In this situation, ∀i |si| = 1 and s1 = · · · = sn. The
pattern output by C2P(C) is p = s1.

On the other hand, the function make pattern({(si, ci}) for each i returns a
pattern pi = si. The pattern output by C2P’(C) is p′ = s1. Therefore, p ≡ p′.

(2-2-2) ∃i |s′i| 6= 0. We have (2-2-2-1) ∃j |s′j | = 0 or (2-2-2-2) ∀j |s′j | 6= 0.

(2-2-2-1) ∃j |s′j | = 0. Then, the function make pattern(C ′) returns “$” and
make pattern(C) returns “s1[1]$”. Therefore, C2P(C) returns failure.

The function make pattern({(si, ci}) for such i returns a pattern pi = si[1]p′i
where p′i is a pattern. However, make pattern({(sj , cj}) for such j returns a
pattern pj = sj [1]. Therefore, C2P’(C) also returns failure.

(2-2-2-2) ∀j |s′j | 6= 0. We can easily confirm that C ′ is a coloring of S′ =
{s′1, . . . , s′n} because ∀i c′i ∈ {0, 1}+ and |s′i| = |c′i|. Since dzero(C ′) = dzero(C)−
1 and done(C ′) = done(C), we can apply induction hypothesis for C ′ and q =
C2P (C ′) = C2P ′(C ′).

In the situation, the pattern output by C2P(C) is p = s1[1]q because headzero(C)
& samehead(C) is true and C ′ = shiftzero(C).

The function make pattern({(si, ci}) for each i returns a pattern pi = si[1]q.
The pattern output by C2P’(C) is p′ = s1[1]q. Therefore, p ≡ p′.

(2-3) Otherwise. The situations are that (1) there exist integers i, j such
that ci[1] 6= cj [1], and (2) ci[1] = 0 for all i but there exist integers i, j such
that si[1] 6= sj [1], and (3) there exists an integer i such that (si, ci) is (null,
null) but there exists an integer j such that (sj , cj) is not (null, null). In these
situations, C2P(C) returns failure. On the other hand, there exist integers i, j
such that make pattern({si, ci}) 6= make pattern({sj , cj}). Therefore, C2P’(C)
also returns failure.

We have now fulfilled both conditions of the principle of mathematical in-
duction. ut



6 Component Set

This section considers how to solve the coloring problem. A proposing approach
is to find a set of substrings of strings in a sample. The set is called a component
set.

Definition 12. Let S = {s1, . . . , sn} be a sample, C = {(s1, c1), . . . , (sn, cn)}
be a coloring of S. A set CS of strings is a component set of S with respect to C
iff for all w ∈ CS there exists si ∈ S such that w = si[k : k + |w| − 1] and
ci[j] = 0 for all j such that k ≤ j ≤ k + |w| − 1.

For instance, let C = {(cabaabaac, 000000010), (cabbabac, 01110000)} be a color-
ing of a sample S = {cabaabaac, cabbabac}. A component set of S with respect
to C is {aba, c}.

A component set divides each string in a sample into two regions which are
colored and non-colored regions. If we find a component set with respect to a
minimum common coloring of a sample, the algorithm C2P outputs a descrip-
tive pattern of the sample from the coloring. Therefore, the coloring problem is
replaced as the following problem.

Definition 13 (Component Set Discovery Problem). The component set
discovery problem is, given a sample, to find a component set of the sample with
respect to a minimum common coloring of the sample.

We proposed algorithms to discovery a component set and showed the effec-
tiveness of the algorithms by experiments using Web documents [8, 9].

7 Conclusion

We described pattern detection of Web documents with the same type of contents
using pattern languages. The pattern detection problem of the Web documents
is to find a descriptive regular pattern, such that successive variables do not
appear in the pattern, of a given sample.

Instead of detecting a pattern of a sample directory, our pattern detection
approach is to divide each string in the sample into two regions which are colored
and non-colored regions. A coloring of a sample is a set of pairs of each string
in the sample and a string over {0, 1}. We proposed an algorithm to generate
a pattern of a sample from a coloring of the sample. Under the approach, the
pattern detection problem is replaced as the coloring problem which is to obtain
a minimum common coloring of a given sample.

In order to solve the coloring problem, our approach is to find a component
set which is a set of substrings of strings in a sample. A component set deter-
mines a coloring of a sample. Therefore, the coloring problem is replaced as the
component set discovery problem which is to find a component set of a given
sample with respect to a minimum common coloring of the sample.

We proposed component set discovery algorithms in [8, 9], where we showed
the effectiveness of the algorithms by experiments using actual Web documents.
The theoretical analysis of the algorithms is an important task.
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