領域予測のための機械発見システムの研究

閲覧数: 2
ダウンロード数: 0
このエントリーをはてなブックマークに追加

領域予測のための機械発見システムの研究

フォーマット:
助成・補助金
Kyushu Univ. Production 九州大学成果文献
責任表示:
篠原 歩(九州大学・大学院・システム情報科学研究科・助教授)
本文言語:
日本語
研究期間:
1997
概要(最新報告):
本研究は,DNA配列データに対して,その中の遺伝子領域予測できるシステムを構築するための体系的な方式を研究し,実用的な領域予測システムを実働化することを目的とする.この目的を達成するために,我々は以下の項目に力点をおいて研究を展開した.(1)領域予測問題の抽象化と定式化.(2)領域予測アルゴリズムの開発.(3)上記アルゴリズムの理論的基礎.(4)計算機実験による上記アルゴリズムの評価.まず,文字列情報の中の特定の機能部位を同定する問題を,文字列の長さを保存する関数のクラスの学習問題として定式化した.そして,その関数の学習アルゴリズムとして,重み付き投票アルゴリズム(WM)を拡張したアルゴリズム(WM^*)を開発した.WMは,複数の予測アルゴリズムを統合して,よりよい精度で予測が行えることを指向するものであり,プールの中の各予測アルゴリズムに予測を投票させ,その投票結果によって全体的な判断を下すものである.我々の拡張によるWM^*は,おのおのの予測アルゴリズムが投票を棄権することを認めるものである.このことにより,直観的には,各予測アルゴリズムは自信のない予測については棄権によって発言権の低下を防ぐことができると期待される.実際に我々は,WM^*による予測の方がWMによる予測よりも原理的に優れていることを理論的に証明した.さらに,このWM^*を組み込んだ領域予測システムHAKKEのプロトタイプを作成し,DNA配列の中から遺伝子領域を予測する実験を行った.また,最も基本的な問題である,パターン照合問題に対して,テキストとパターンが両方とも直線的プログラムで記述されて与えらたときに高速にパターン照合を行うアルゴリズムの開発に成功した。 続きを見る
本文を見る

類似資料: