抽象ウィナー空間の複素化の研究

閲覧数: 2
ダウンロード数: 0
このエントリーをはてなブックマークに追加

抽象ウィナー空間の複素化の研究

フォーマット:
助成・補助金
Kyushu Univ. Production 九州大学成果文献
責任表示:
谷口 説男(九州大学・大学院・数理学研究科・助教授)
本文言語:
日本語
研究期間:
1996
概要(最新報告):
無限次元空間上の振動積分に対し停留位相の原理が成り立つか否かは決定的な判別条件は得られていない。しかし、その成立を仮定して推論を進めることで量子力学において準古典近似、WKB近似と呼ばれている議論が成立することになる。それらは一般のラグランジ関数に対するプロパゲ-タの計算を二次形式で与えられるラグランジ関数に対するプロパゲ-タの計算に帰着させる。このとき用いられる測度はファインマンの経路積分論に現れる仮想的な測度である。この考察の数学的に厳密なモデルとして抽象ウィナー空間Bの上での確率振動積分の漸近問題の考察がある。本研究では抽象ウィナー空間上の解析関数を導入し、それを新たに導入されたBの複素化へ解析接続することで有限次元空間の停留位相法の研究で鞍部点法と呼ばれている手法を抽象ウィナー空間上で展開した。上の準古典近似の問題と関連して2種類の問題が生起してくる。一つは以下に二次形式に帰着するかであり、今一つは二次形式の場合に漸近問題をとくことである。本研究では相関数が二次形式となり振幅関数が跡族に入る核を持つ多重ウィナー積分の時に漸近問題を解くことに成功した。これは今までに得られていた振幅関数がウィナー空間上のフーリエ変換で得られる場合を含む形で拡張したものとなっている。この結果は現在論文にまとめるべく準備中である。この考察から更に二次形式の場合に帰着することについての問題点についての知見を得、それらを解決すべく現在研究を継続している。 続きを見る
本文を見る

類似資料:

3
確率振動積分の漸近挙動の研究 by 谷口 説男; TANIGUCHI Setsuo
11
ガウス実解析の諸問題 by 佐藤 坦; HIROSHI Sato
3.
確率振動積分の漸近挙動の研究 by 谷口 説男; TANIGUCHI Setsuo
11.
ガウス実解析の諸問題 by 佐藤 坦; HIROSHI Sato