A P-Complete Language Describable with Iterated Shuffle

Takayoshi Shoudai
Department of Control Engineering and Science
Kyushu Institute of Technology
Iizuka 820, Japan

September 6, 1991

Abstract

We show that a P-complete language can be described by using the shuffle operator, shuffle closure, union, concatenation, Kleene star and intersection on a finite alphabet.

1 Introduction

In this paper, we construct a P-complete language by using shuffle operator \triangle, iterated shuffle \uparrow, union \cup, concatenation \cdot, Kleene star $*$ and intersection \cap over a finite alphabet. The shuffle operator was introduced by [10] to describe the class of flow expressions. Formal properties of expressions with these operators have been extensively studied from various points in the literatures [2, 3, 4, 5, 8, 9, 10, 11].

It is known that the complexity of almost classes of languages can be increased by using the iterated shuffle operator. For example, there are two deterministic context-free languages L_1 and L_2 such that $L_1 \triangle L_2$ is NP-complete [9]. Moreover, by allowing the synchronization mechanisms, any recursively enumerable set can be described [1, 3].

In [2, 11], by using the shuffle and iterated shuffle operators together with $\cup, \cdot, *, \cup$, an NP-complete language is described. We employ the same set of operators to describe our P-complete language. In the proof of P-completeness, the intersection operator plays an important role to make the language polynomial-time recognizable. However, we do not know whether the intersection operator is necessary to define a P-complete language as in the case with NP-complete [2, 11].

Recently, P-complete problems have received considerable attentions since they do not seem to allow any efficient parallel algorithms [7]. This paper gives a P-complete problem of a new kind, which is described by a single expression.
2 Preliminaries

Let \(\Sigma \) be a finite alphabet and \(\Sigma^* \) be \(\{a_1 \cdots a_n \mid a_i \in \Sigma \text{ for } i = 1, \ldots, n \text{ and } n \geq 0\} \). A subset of \(\Sigma^* \) is called a language.

Definition 1 For languages \(L, L_1 \) and \(L_2 \), we define the shuffle operator \(\triangle \), the iterated shuffle \(\vdash \) and operators, \(\cdot, *, + \) as follows:

1. \(L_1 \triangle L_2 = \{x_1y_1x_2y_2 \cdots x_my_m \mid x = x_1x_2 \cdots x_m \in L_1, y = y_1y_2 \cdots y_m \in L_2 \text{ and } x_i, y_i \in \Sigma^* \text{ for } i = 1, \ldots, m\} \) (shuffle operator).
2. \(L^\vdash = \{\varepsilon\} \cup L \cup (L \triangle L) \cup (L \triangle L \triangle L) \cup \cdots \) (iterated shuffle).
3. \(L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\} \) (abbreviated to \(L_1L_2 \)).
4. \(L^* = \{\varepsilon\} \cup L \cup (L \cdot L) \cup (L \cdot L \cdot L) \cdots \).
5. \(L^+ = L \cdot L^* \).

We identify a language \(\{w\} \) which consists of only one word with the \(w \). Thus, we will denote \(\{w\}^*, \{w\}^+, \{w\}^\vdash \) by \(w^*, w^+, w^\vdash \), respectively.

As the basis of our reduction, we use the circuit value problem (CVP) that was shown P-complete [6]. Our definition in this paper slightly different from one in [6].

CIRCUIT VALUE PROBLEM (CVP)

Instance: A circuit \(C = (C_1, \ldots, C_m, C_{m+1}, \ldots, C_n) \), where each \(C_i \) is either (i) \(C_i = \text{true} \) or \(\text{false} \) \((1 \leq i \leq m) \), (ii) \(C_i = \text{NOR}(C_j, C_k) \) \((m + 1 \leq i \leq n \text{ and } j, k < i) \).

Problem: Decide whether the value of \(C_n \) is true.

In later section, CVP represents the set of all circuits whose output is true.

Let \(\Sigma \) be a finite alphabet, \(v_1, v_2, \ldots, v_m \) be symbols where \(v_i \in \Sigma \) for \(i = 1, \ldots, m \) and \(w_1, w_2, \ldots, w_{m+1} \) be words on a alphabet \(\Sigma - \{v_1, v_2, \ldots, v_m\} \). By using the iterated shuffle operation, a language \(\{v_1^n v_2^n \cdots v_m^n \mid n \geq 1\} \) can be described as \((v_1v_2 \cdots v_m)^\vdash \cap v_1^+ v_2^+ \cdots v_m^+ \).

Moreover, we can represent \(\{w_1w_2^n w_3^n \cdots w_m^n w_{m+1} \mid n \geq 1\} \) as

\[
(w_1w_2 \cdots w_{m+1} \Delta(v_1v_2 \cdots v_m)^\vdash) \cap w_1v_1^+ w_2v_2^+ \cdots w_mv_m^+ w_{m+1}^+.
\]

We often use this form of languages to define a P-complete language. Whenever languages like these are defined in the next section, we will not describe the languages explicitly by using the shuffle operation and the iterated shuffle.
3 A P-complete language

The main result in this paper is the following theorem.

Theorem 1 A P-complete language can be described with operators $\cdot, *, \cup, \cap, \triangle, \dagger$.

3.1 Definition of the language

We will describe a P-complete language L with the alphabet $\Sigma = \{0, 1, a, b, c, d, u, v, x, y\}$. This language is defined stepwise.

At first, a language L_a is defined as follows:

$$L_a = a^+0 \cup a^+1 = \{a^i \beta \mid i \geq 1 \text{ and } \beta \in \{0, 1\}\}.$$

$L_{ab} = \{b^+1b^+a^+0 \cup b^+0b^+1a^+1 \cup (b^+b^+0a^+1) \cup (b^+0b^+0a^+1)\} = \{b^{i'}b^{j'}b^{k'}a^{i} \beta \mid i, j, k \geq 1 \text{ and } (\beta', \beta'', \beta) \in \{(1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 1)\}\}$

$L_b = b^+1 = \{b^i \mid i \geq 1\}$.

$$L = cL_a + L_{ab} + L_b.$$

The following language T (resp. F) is used for a distribution of *true* (resp. *false*) value.

$$T_x = \{1dx^iu^i \mid i \geq 1\}, \quad T_y = \{1y^ju^i \mid i \geq 1\}.$$

$$T_{xy} = \{1dx^iu^i1y^ju^j \mid i \geq 1\}, \quad T_{yy} = \{1y^ju^i1y^ju^j \mid i \geq 1\}.$$

$$T_{odd} = T_{xy}T_{yy}^*T_y \cap T_xT_{yy}^* = \{1dx^iu^i(1y^ju^j)^j \mid i \geq 1, j \geq 1 \text{ and } j \text{ is odd}\}.$$

$$T_{even} = T_{xy}T_{yy}^*T_y \cap T_xT_{yy}^* = \{1dx^iu^i(1y^ju^j)^j \mid i \geq 1, j \geq 1 \text{ and } j \text{ is even}\}.$$

$$T = T_x \cup T_{odd} \cup T_{even} = \{1dx^iu^i(1y^ju^j)^j \mid i \geq 1 \text{ and } j \geq 0\}.$$

F is defined in a similar way. We use a symbol 0 instead of 1 which is used to construct the language T.

$$F = \{0dx^iu^i(0y^ju^j)^j \mid i \geq 1 \text{ and } j \geq 0\}.$$

Subwords $1y^ju^i$ (resp. $0y^ju^i$) of a word in T (resp. F) are combined with b^i0 (resp. b^i1) of words in L and decides the value of the ith variable. These three languages L, T and F are combined with each other by using the shuffle operation and the iterated shuffle.
A language \mathcal{K} is used for our language to become polynomial time decidable. We construct the language \mathcal{K} stepwise as follows:

\[
A_{11} = \{a^i 11d x^i u^i \mid i \geq 1\}, \\
A_{00} = \{a^i 00d x^i u^i \mid i \geq 1\}, \\
A_{01} = \{a^i 01d x^i u^i \mid i \geq 1\}.
\]

In a similar way, following languages are defined.

\[
B_{01} = \{b^i 01y^i u^i \mid i \geq 1\}, \\
B_{11} = \{b^i 11y^i u^i \mid i \geq 1\}.
\]

\[
M = (A_{11} \cup A_{00})^+ (B_{01} B_{01} A_{01})^+ B_{11}.
\]

The language M has words whose subwords of the form $dx^i u^i$ corresponding to the ith gate occurred more than two times a word. We want these subwords to be occurred exactly one time a word.

\[
N_d = (dxude^2 u^2 \Delta (xuxu)^t) \cap (dx^+ u^+ dx^+ u^+) = \{dx^i u^i d x^{i+1} u^{n+1} \mid i \geq 1\}.
\]

\[
N = c((dxuN_d^* \cap N_d^* dx^+ u^+) \cup (dxuN_d^* dx^+ u^+ \cap N_d^*))
\]

\[
= \{cdxudx^2 u^2 \cdots dx^i u^i \mid i \geq 1\}.
\]

Then, we define a language \mathcal{K} which will be used for allowing a language \mathcal{J} to be in P.

\[
\mathcal{K} = M \cap (N \Delta \Sigma'), \text{ where } \Sigma' = \Sigma - \{d, u, x\}.
\]

Finally, we defined a language \mathcal{L} as follows:

\[
\mathcal{L} = \mathcal{J} \cap \mathcal{K}.
\]

3.2 Proof of the P-completeness

Theorem 1 follows from a next lemma.
Lemma 1 \(L \) is log-space equivalent to CVP, i.e., \(L \) is log-space reducible from CVP and CVP is log-space reducible from \(L \).

Proof. We will define a function \(f \) from CVP to \(\Sigma^* \). \(f \) is a function which transform \(C = (C_1, \ldots, C_n) \in \text{CVP} \) to \(f(C) = \gamma w_1 \cdots w_n w_{n+1} \in \Sigma^* \), where

\[
 w_i = \begin{cases}
 a^i 11dx^i u^i & \text{if } C_i = \text{true} \\
 a^i 00dx^i u^i & \text{if } C_i = \text{false} \\
 b^i 01y^i v^i b^k 01y^k v^k a^i 01dx^i u^i & \text{if } (C_i = \text{NOR}(C_j, C_k)) \\
 b^i 11y^i u^i & \text{if } i = n + 1.
 \end{cases}
\]

It is easy to see that this function is computable in log-space by using a deterministic Turing machine.

We show following two claims.

Claim 1. \(f(C) \in L \), for every \(C \in \text{CVP} \).

Proof. Let a word \(w = cw_1 \cdots w_m w_{m+1} \cdots w_n w_{n+1} \) be a transformed word from some \(n \)-gates instance \(C = (C_1, \ldots, C_m, C_{m+1}, \ldots, C_n) \) where \(C_i \) is an input gate for \(1 \leq i \leq m \), an and gate for \(m + 1 \leq i \leq n \) and an output of this circuit is true. This instance has only one tuple of assignments of a boolean value (true or false) to each variables. We describe this assignment as \(B = (\beta_1, \ldots, \beta_n) \) such that \(\beta_i = 1 \) (resp. \(\beta_i = 0 \)) if \(C_i = \text{true} \) (resp. \(C_i = \text{false} \)) for \(i = 1, \ldots, n \).

According to \(B = (\beta_1, \ldots, \beta_n) \), we divide \(w_i \) into two words \(w'_i \) and \(w''_i \).

(1) For \(i = 1, \ldots, m \), \(w'_i = a^i \beta_i \), \(w''_i = b^i dx^i u^i \).

(2) For \(i = m + 1, \ldots, n \), \(w'_i = b^i \beta_j b^k \beta_i \beta_i \), \(w''_i = b^j y^i v^j \beta_k y^i v^k \beta_i dx^i u^i \).

We note that since \(C_j, C_k \) and \(C_i \) are related with each other by an NOR gate, \(w'_i \) is in \(L_{\beta \beta \beta} \).
(3) $w_{n+1}' = b^n 1, w_{n+1}'' = 1y^n v^n$.

It is easy to see that a word $w' = cw_1' \cdots w_{n+1}'$ is in $L = L_n + L_{bba} + L_h$.

On the other hand, since $w'' = w_1'' \cdots w_{n+1}''$ is constructed with subwords of the form $\beta_i dx^i u^i$ or $\beta_i y^i v^i$ and for each NOR gate, input gate numbers of this gate are always lower than a number of itself, we can describe the word $w'' \in t_1 \triangle t_2 \triangle \cdots \triangle t_n$, where $t_i = \beta_i dx^i u^i \beta_i y^i v^i \cdots \beta_i y^i v^i$. Since $t_i \in T$ or F, for $i = 1, \ldots, n$, $f(C) = cw_1 \cdots w_m w_{m+1} \cdots w_n w_{n+1} \in w' \triangle t_1 \triangle \cdots \triangle t_n \subset L \triangle (T \cup F)^\dagger = \mathcal{L}$. □

Since every words w of \mathcal{L} is contained in M, c is of the form $w = cw_1 \cdots w_m w_{m+1} \cdots w_n w_{n+1}$, where, for $i = 1, \ldots, n + 1$,

$$w_i = \begin{cases} \alpha_i \beta_i \beta_i dx^i u^i & (1 \leq i \leq m, \beta_i \in \{0, 1\}) \\ b^i 01 y^i v^i b^i 01 y^i v^i a^i 01 dx^i u^i & (m + 1 \leq i \leq n) \\ b^i 01 y^i v^i b^i 01 y^i v^i a^i 01 dx^i u^i & (i = n + 1) \end{cases}$$

We transform a word $w \in \mathcal{L}$ to a circuit $C = (C_1, \ldots, C_m, C_{m+1}, \ldots, C_n)$ as follows:

(1) For $i = 1, \ldots, m$, if $\beta_i = 1$ then $C_i = \text{true}$ else $C_i = \text{false}$.

(2) For $i = m + 1, \ldots, n$, $C_i = \text{NOR}(C_j, C_k)$ where $j = t_i'$ and $k = t_i''$.

It is easy to see that g is well-defined function and this function is log-space computable.

Claim 2. $g(w) \in CVP$, for every $w \in \mathcal{L}$.

Proof. Since $w \in N$, $\ell_i = i$ for every $i = 1, \ldots, n$. Moreover, since some parts of w are constructed of words which are contained in T or F, a subword $y^i v^i$ of w is never occured before a subword $dx^i u^i$ of w. Therefore $j, k \leq i$.

Since $w \in L \triangle (T \cup F)^\dagger$ and w includes n subwords $dxu, dx^2 u^2, \ldots, dx^n u^n$, there exist n words t_1, \ldots, t_n in $T \cup F$ which contribute a construction of w by using the iterated shuffle. Without loss of generality, we assume that t_i includes $x^i u^i$ as a subword.

We claim that for $i = 1, \ldots, n$, $t_i \in T$ if and only if a value of C_i is true. This is shown by the induction. For $i = 1, \ldots, m$, if $\beta_i = 1$, then t_i must be in T. Thus, by definition of g, $C_i = \text{true}$. For $i \geq m + 1$, suppose that for $j, k < i$, this claim is true. We only discuss the case of $t_j \in T$ and $t_k \in T$. Other case is shown in a similar way. By the assumption, values of C_j and C_k is true. We remove contributions of t_j and t_k from w_i. The remaining word is $b^j 0b^k 0a^i 01 dx^i u^i$. Moreover, w_i must has a contribution from L_{bba}. This contribution must be of the form $b^+ 0b^+ 0a^+ 1$. Thus, the remaining word after removing this contribution is $0dx^i u^i$. Therefore, t_i must be in F. On the other hand, a value of $C_i = \text{NOR}(C_j, C_k)$ is false. Thus, we hold this claim.

Since t_n must be in T, a value of C_n is true. Thus, $g(w) \in CVP$. □

By the discussion above, we can say that \mathcal{L} have a log-space reduction f from CVP and CVP have a log-space reduction g (inverse of f) from \mathcal{L}. □
References

