Ten isolates of Chaetomium spp. were obtained from sclerotia of Sclerotinia sclerotiorum buried in the soil in Okinawa prefecture. Since eight of ten isolates inhibited mycelial growth of S. sclerotiorum on PDA medium, their identification was undertaken. These isolates had small perithecia and arcuate terminal hairs. Since seven of eight isolates had two apical germ pores in ascospore and the tips of terminal hairs coiled 1 ~ 2 times, they were identified as C. trilaterale var. diporum. Other isolates were identified as C. trilaterale var. cupreum because of one apical germ pore in ascospore and red-copper terminal hairs. The antifungal substance (C_{31}H_{35}O_{7}N) produced by C. trilaterale var. diporum RC-5 inhibited mycelial growth of S. sclerotiorum more than 90% in PD liquid medium at 0.5 ppm.

INTRODUCTION

Chaetomium spp. are known as one of the important member of pyrenomycetidae. They are saprophytic fungi which degrade cellulose containing substances. Since the first report on the antibacterial substance, chetomin, produced by C. cochliodes (Waksman and Bugie, 1944), various biologically active substances produced by Chaetomium spp., such as, cochliodinol (Brewer et al., 1968), colletodiol (Powell, 1969), oosporein (Cole, 1974) and chaetoglobosin (Sekita et al., 1981) have been reported. Some of them were inhibitive against plant pathogens. Cullen and Andrews (1984) reported that chetomin produced by C. globosum showed a principal antagonism to Venturia inaequalis.

In 1986, one of the author, Moromizato, obtained ten isolates of Chaetomium spp. which had small perithecia with arcuate terminal hairs by trapping with sclerotia of Sclerotinia sclerotiorum buried in the soil in Okinawa prefecture. Eight of ten isolates inhibited mycelial growth of S. sclerotiorum intensively on PDA (potato dextrose agar) plate (Fig. 1). It was reported that the microorganisms such as Gliocladium spp., Trichoderma spp. and Coniothyrium minitans (Willetts and Wong, 1980) were antagonistic by degrading sclerotia in soil. While, the isolates of Chaetomium spp. studied in this experiment seemed to be antagonistic by inhibiting the mycelial growth. Therefore, the excretion of the antifungal substance by the present isolates was assumed. The extraction and the purification were successfully conducted and the results were reported elsewhere (Nakashima et al., 1991). The results of identification on the isolates of Chaetomium spp. tested and the biological effects of the excreted antifungal substance against S. sclerotiorum will be presented in this report.
Fig. 1. Inhibition of mycelial growth of Sclerotinia sclerotiorum by Chaetomium trilaterale var. diporum on PDA medium.

MATERIALS AND METHODS

Fungal isolates

Chaetomium spp. used in this study were obtained from sclerotia of Sclerotinia sclerotiorum buried in the soil in Okinawa prefecture (Moromizato et al., 1987). Eight of ten isolates (RC-1, 2, 3, 5, 6, 8, 9, 10) except for two (RC-4, 7) inhibited mycelial growth of S. sclerotiorum intensively on PDA medium.

Media used for identification.

Isolate RC-5 was grown on PDA (1,000 ml potato (300 g) decoction, 20.0 g D-glucose, 15.0 g agar), cellulose agar (CA) (10.0 g cellulose powder, 0.5 g NH₄NO₃, 0.5 g K₂HPO₄, 0.5 g MgSO₄·7H₂O, 20.0 g agar, 1,000 ml distilled water), corn meal agar (CMA) (17.0 g corn meal agar (Difco), 1,000 ml distilled water), Oat meal agar (OMA) (50.0 g oat meal powder, 20.0 g sucrose, 15.0 g agar, 1,000 ml distilled water) and malt extract agar (MEA) (20.0 g malt extract, 18.0 g agar, 1,000 ml distilled water) media, and other isolates were cultured on PDA, CA, and CMA medium at 27°C until mature perithecia were formed. Then, their morphological characteristics were observed. Since the ascus of Chaetomium spp. was extinguished in mature perithecium, the observation of ascus was conducted before maturation.

Production and extraction of the antifungal substance

The isolate RC-5 was used for production of the antifungal substance. Mycelial disk (7 mm in diameter) cut from the mycelial mat on PDA with cork borer was inoculated to modified Richards medium (20.0 g D-glucose, 10.0 g KNO₃, 5.0 g KH₂PO₄, 2.5 g MgSO₄·7H₂O, 20 mg FeCl₃·6H₂O, 1 mg thiamine hydrochloride, 0.05 mg biotin, 1,000 ml distilled water, pH 5.2).

The culture was conducted at 30°C for 10 days in still condition. The antifungal substance was extracted with chloroform and purified by thin layer chromatography (dichloromethane-methanol-28% ammonia water (65 : 30 : 5, v/v)), reextraction with
chloroform and recrystallization with hexane from chloroform solution. Details were presented elsewhere (Nakashima et al., 1991).

Mycelial growth inhibition of *S. sclerotiorum* in PD liquid medium

The mycelial disk (7 mm) of *S. sclerotiorum* precultured on PDA plate was inoculated in 30 ml potato dextrose (PD) liquid medium containing 0.5 ppm of the antifungal substance. The culture was incubated at 22°C and filtrated through filter paper in suction. Mycelia transferred in a weighing bottle was dried at 60°C and weighed.

Effect of the antifungal substance on ascospore germination of *S. sclerotiorum*

Sclerotia were harvested from PDA culture incubated at 22°C for 21 days. Harvested sclerotia were germinated by the methods of Saito (1977). Obtained expanded-apothecia were picked up with forceps and pressed in a drop of sterilized distilled water on sterilized slide glass. Concentrated ascospore suspension was recovered with micro-pipette and dropped in 0.1-10 ppm sample solution. Sterilized distilled water was used as the check. The test suspension was kept at 22°C and germinated ascospores were counted at 24th hour.

RESULTS AND DISCUSSION

The seven isolates (RC-1, 3, 5, 6, 8, 9, 10) which had intensive antifungal activity against *S. sclerotiorum* on PDA plate were seemed to be the same species. These isolates produced reddish pigment in PDA medium and sometimes red exudate was observed on the mycelial mat. Perithecia were dark olive brown in transmitted light, subspherical to ovoid, 90-140 × 80-140 μm with wide ostiole. Terminal hairs were yellowish brown in transmitted light, straight or arcuate, at the tips often coiled 1-2 times, 3.5-4.5 μm wide at the base. Lateral hairs were straight or arcuate. Asci were clavate and 8 spores. Ascospores were olive brown to olive green, oblate to irregularly ovate, sometimes flattened on one side, 8.5-10.5 × 4.5-5.5 μm, terminal germ pore at each end (Fig. 2).

These morphological characteristics indicated that these fungi belong to *Chaetomium aureum* or *C. trilaterale* because of their arcuate terminal hairs, small perithecia, and two apical germ pores (Millner, 1975; Millner et al., 1977; Skolko, 1953; Udagawa, 1960). Ames (1969) reported that terminal hairs of *C. aureum* were not coiled. While, terminal hairs of these isolates were coiled 1-2 times at the tips. From these results the isolates were decided as *C. trilaterale*. Cooke (1973) reported that *C. trilaterale* could be classified into four varieties, namely, var. *trilaterale*, var. *chiversii*, var. *cupreum* and var. *diporum*. *C. trilaterale* var. *trilaterale* had subglobose perithecia but present isolates had comparatively ovate perithecia. Ascospores of *C. trilaterale* var. *chiversii* had single germ pore but these isolates had two apical germ pores. The color of terminal hairs of *C. trilaterale* var. *cupreum* was bright orange-copper but these isolates had yellowish brown terminal hairs. These results finally led the conclusion that the present isolates were *C. trilaterale* Chivers var. *diporum* Cooke.

The isolate RC-2 was distinguished from other isolates by the color of perithecia
Fig. 2. Photomicrographs of Chaetomium trilaterale var. diporum RC-5 (1, 2, 3) and C. trilaterale var. cupreum RC-2 (4, 5, 6).
1, 4: Perithecium (scale bar=50μm). 2, 5: Ascus (scale bar=10μm).
3, 6: Ascospore (scale bar=10μm). Arrows show germ pores.
Antagonistic Microorganisms, Chaetomium spp.

formed on CA and CMA medium. The perithecia were dark red in reflected light. Morphological characteristics of RC-2 were different from var. *diporum* in the color of terminal hair and germ pore of ascospore. This isolate had bright orange-copper terminal hair coiled regularly 2-3 times at the tips and single apical germ pore (Fig. 2). These characteristics indicated that the isolate RC-2 belongs to *C. trilaterale* Chivers var. *cupreum* (Ames) Cooke.

Von Arx et al. (1986) published the monograph of *Chaetomium* and proposed *C. aureum* for *C. trilaterale* var. *diporum* and *C. cupreum* for *C. trilaterale* var. *cupreum*. The new concept of von Arx et al., however, has not been discussed enough, we undertook the identification by the description of Cooke.

The results of mycelial growth inhibition of *S. sclerotiorum* were shown in Fig. 3. There were no significant differences at 48 hours, but mycelial dry weight was suppressed more than 90% by 156th hour. While, the antifungal substance did not inhibit ascospore germination of *S. sclerotiorum* even at 10 ppm (Table 1). From these results, it was indicated that the antifungal substance produced by *Chaetomium trilaterale* var. *diporum* had mycelial-growth inhibition activity but not spore-germination inhibition activity.

The novel antifungal substance produced by *Chaetomium trilaterale* var. *diporum* RC-5 was decided as C$_{31}$H$_{35}$O$_{6}$N and the details will be presented elsewhere (Nakashima et al., 1991). The chemical structure and mode of action of the antifungal

![Fig. 3. Effect of antifungal substance on mycelial growth in liquid medium (PD).]
Table 1. Effect of the antifungal substance against ascospore germination of S. sclerotiorum

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Percentage of germinated ascospore</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 ppm</td>
<td>94.7% a)</td>
</tr>
<tr>
<td>2.0 ppm</td>
<td>96.5%</td>
</tr>
<tr>
<td>5.0 ppm</td>
<td>92.6%</td>
</tr>
<tr>
<td>10.0 ppm</td>
<td>94.8%</td>
</tr>
<tr>
<td>Control</td>
<td>93.2%</td>
</tr>
</tbody>
</table>

a) Germinated ascospores were counted at 24 hours after the treatment

ACKNOWLEDGEMENTS

The authors are grateful to Dr. S. Udagawa in National Institute of Hygienic Sciences for his many advices at the identification of Chaetomium spp., Prof. E. Taniguchi, Department of Agricultural Chemistry in Kyushu University for his many advices, and Mr. R. Isobe, Faculty of Pharmaceutical Sciences for performing the FAB-MS.

REFERENCES

Saito, I. 1977 Studies on the maturation and germination of sclerotia of Sclerotinia sclerotiorum.
Antagonistic Microorganisms, Chaetomium spp.

