THE NUMBER OF PROOFS FOR A BCK-FORMULA

YUICHI KOMORI AND SACHIO HIROKAWA

In this note, we give a necessary and sufficient condition for a BCK-formula to have the unique normal form proof.

We call implicational propositional formulas formulas for short. BCK-formulas are the formulas which are derivable from axioms \(B = (a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow c \rightarrow b \), \(C = (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c \), and \(K = a \rightarrow b \rightarrow a \) by substitution and modus ponens. It is known that the property of being a BCK-formula is decidable (Jaskowski [11, Theorem 6.5], Ben-Yelles [3, Chapter 3, Theorem 3.22], Komori [12, Corollary 6]). The set of BCK-formulas is identical to the set of provable formulas in the natural deduction system with the following two inference rules.

\[
\begin{align*}
\frac{\gamma \vdash \delta}{\gamma \rightarrow \delta} \quad & (\rightarrow I) \\
\frac{\gamma \rightarrow \delta \quad \gamma}{\delta} \quad & (\rightarrow E).
\end{align*}
\]

Here \(\gamma \) occurs at most once in \((\rightarrow I) \). By the formulae-as-types correspondence [10], this set is identical to the set of type-schemes of closed BCK-\(\lambda \)-terms. (See [5].) A BCK-\(\lambda \)-term is a \(\lambda \)-term in which no variable occurs twice. Basic notions concerning the type assignment system can be found [4]. Uniqueness of normal form proofs has been known for balanced formulas. (See [2, 14].) It is related to the coherence theorem in cartesian closed categories. A formula is balanced when no variable occurs more than twice in it. It was shown in [8] that the proofs of balanced formulas are BCK-proofs. Relevantly balanced formulas were defined in [9], and it was proved that such formulas have unique normal form proofs. Balanced formulas are included in the set of relevantly balanced formulas. We show a necessary and sufficient condition for a BCK-formula to have a unique

Received December 11, 1991; revised April 12, 1992.

\[1\] This work was partially supported by a Grant-in-Aid for Encouragement of Young Scientists No. 02740115 of the Ministry of Education.
normal form proof using the following notion of minimality. The notion of BCK-minimality was introduced by Komori [13]. A formula \(\alpha \) is called a trivial substitution instance of \(\beta \) iff \(\alpha \) is a substitution instance of \(\beta \) and \(\beta \) is a substitution instance of \(\alpha \).

Definition 1. A formula is **BCK-minimal** iff it is a BCK-formula and it is not a nontrivial substitution instance of another BCK-formula. A BCK-formula \(\beta \) is a **minimal formula** of \(\alpha \) iff \(\beta \) is BCK-minimal and \(\alpha \) is a substitution instance of \(\beta \).

It is clear that a BCK-minimal formula is a principal type-scheme of a closed BCK-\(\lambda \)-term.

We identify two \(\lambda \)-terms when they are \(\alpha \)-convertible. Similarly, two types are identified when one is a trivial substitution instance of the other.

Lemma 1 ([7]). If two closed BCK-\(\lambda \)-terms in \(\beta \eta \)-normal form have the same principal type, then they are identical.

Lemma 2 ([8]). A BCK-formula is BCK-minimal iff it is a principal type-scheme of a closed BCK-\(\lambda \)-term in \(\beta \eta \)-normal form.

Theorem 1. Given a BCK-formula \(\alpha \), the number of closed BCK-\(\lambda \)-terms in \(\beta \eta \)-normal form which has type \(\alpha \) is identical to the number of minimal formulas of \(\alpha \).

Proof. Let \(\alpha \) be a BCK-formula. We denote by \(\text{proof}(\alpha) \) the set of closed BCK-\(\lambda \)-terms in \(\beta \eta \)-normal form which have type \(\alpha \) and we denote by \(\text{min}(\alpha) \) the set of minimal formulas of \(\alpha \). We define a function from \(\text{proof}(\alpha) \) to \(\text{min}(\alpha) \) and show that it is surjective and injective. Let \(M \in \text{proof}(\alpha) \). Then \(M \) has type \(\alpha \). By the principal type-scheme theorem (Theorem 15.26 of [4]), \(M \) has a principal type-scheme. We denote it by \(\text{pts}(M) \). Since \(M \) is in \(\beta \eta \)-normal form, \(\text{pts}(M) \) is minimal by Lemma 2. So we have \(\text{pts}(M) \in \text{min}(\alpha) \). Thus \(\text{pts} \) is a function from \(\text{proof}(\alpha) \) to \(\text{min}(\alpha) \). Injectivity of \(\text{pts} \) is immediate from Lemma 1. To prove the surjectivity, let \(\beta \in \text{min}(\alpha) \) and apply Lemma 2 to \(\beta \). Then there is a closed BCK-\(\lambda \)-term \(N \) in \(\beta \eta \)-normal form whose principal type-scheme is \(\beta \). Therefore \(\text{pts} \) is surjective. □

One consequence of the theorem is that a BCK-formula \(\alpha \) has only a finite number of normal form proofs. In fact, we can enumerate all the minimal formulas instead of \(\lambda \)-terms. Given a formula \(\gamma \), we denote by \(s_0(\gamma) \) the set of formulas \(\beta \) such that \(\gamma \) is a substitution instance of \(\beta \). Since we identify trivial substitution instances, the set \(s_0(\gamma) \) is finite. Next we denote by \(s(\gamma) \) the set of BCK-formulas in \(s_0(\gamma) \). Since BCK-provability is decidable, we can enumerate the elements of \(s(\gamma) \) from \(s_0(\gamma) \). Finally note that \(\beta \) is BCK-minimal iff \(s(\beta) = \{ \beta \} \). Therefore we have

\[
\text{min}(\alpha) = \{ \beta \in s_0(\alpha) \mid s(\beta) = \{ \beta \} \}.
\]

Thus we can enumerate all the elements of \(\text{min}(\alpha) \).

Akama [1] showed that the number of cut-free proof (in sequent calculus) for a BCK-formula is finite.

Corollary 1. A BCK-formula has a unique proof in \(\beta \eta \)-normal form iff it has a unique minimal formula.

References

DEPARTMENT OF MATHEMATICS,
SHIZUOKA UNIVERSITY,
SHIZUOKA 422, JAPAN

DEPARTMENT OF COMPUTER SCIENCE,
COLLEGE OF GENERAL EDUCATION,
KYUSHU UNIVERSITY,
FUKUOKA 810, JAPAN

E-mail: hirokawa@ec.kyushu-u.ac.jp