<departmental bulletin paper>
Migration Behavior of Fe, Cu, Zn, and Mo in Alkaline Tailings from Lanjiagou Porphyry Molybdenum Deposits, Northeast China

Creator
Language
Publisher
Date
Source Title
Vol
Issue
First Page
Last Page
Publication Type
Access Rights
Related DOI
Related DOI
Related URI
Related URI
Related HDL
Relation
Abstract The migration behavior of Fe, Cu, Zn, and Mo within an inactive tailings impoundment in Lanjiagou molybdenum mining area, northeast China, is investigated by mineralogical and geochemical methods. XRD... results show that carbonate minerals consume the liberated protons during sulfide minerals oxidation and subsequent hydrolysis of secondary phase. Meanwhile, the tailings impoundment maintains an alkaline condition because of the hydrolysis of carbonate minerals (paste pH=7.3-8.24). Analyses and comparison of geochemical behavior of heavy metals show that concentrations of Fe, Cu and Zn reach maximum values between 30 and 60 cm below the surface of tailings impoundment but there is hardly any bioavailable fraction of the three metals in the tailings impoundment. Fe, Cu and Zn are retained in the tailings impoundment for precipitation, co-precipitation, adsorption, complexation and ion exchange mechanisms and a weak cemented layer is formed at the lowest part of oxidation zone accordingly. The results demonstrate that the alkaline condition becomes a natural factor for retaining Fe, Cu and Zn in Lanjiagou tailings pounds. The concentrations of Mo significantly increase with depth (1090-1146 μg•g-1 at 200 cm deep) and so does the proportions of bioavailable Mo fraction (34-37% at 200 cm deep) in the tailings impoundment, which further reveals that the alkaline condition is helpful to increase the solubility of molybdate and the adsorption of iron (hydr)oxides on Mo becomes weaker at pH > 7. Mo can leach from Lanjiagou Mo tailings pounds into outside environment and may pose a high risk to the local ecological system.show more

Hide fulltext details.

pdf p019 pdf 262 KB 129  

Details

Record ID
Peer-Reviewed
Related URI
Subject Terms
ISSN
NCID
Type
Created Date 2011.01.06
Modified Date 2020.10.26

People who viewed this item also viewed